
disease signatures for use in multiplexed formats by mass spec-
trometry (3).

Methods
Synthetic Biomarker Synthesis. Amine terminated eight-arm PEG (10 kDa,
20 kDa, and 40 kDa; Jenkem Technologies) was dissolved in PBS and passed
through a 0.2-μm filter. DLS measurements were conducted on a Zetasizer
(Malvern) in PBS and 50% FBS. A 20-fold molar excess of succinimidyl
iodoacetate (SIA; Pierce) was reacted to introduce thiol reactive handles.
Excess SIA was removed by FPLC on a Superdex 200 column (AKTA purifier;
GE Healthcare). Cysteine-terminated peptides (Q1 = 5FAM-GGPLGVRGKK(CPQ-2)-
PEG2-C, CPC Scientific; F1 = eGvndneeGffsarkGGPLGVRGC, lowercase =
D-stereoisomer, Tufts University Peptide Core Facility) were then reacted with
PEG at a 20:1 molar ratio before excess peptides were removed by FPLC. F1-PEG
conjugated was further reacted with NHS-Vivotag750 (Perkin-Elmer) for im-
aging applications. NWs were synthesized according to previously published
protocols and functionalized with peptides as above (41). All peptide−NP
formulations were stored in PBS at 4 °C.

In Vitro Protease Assays. Q1–PEG (3 μM by peptide) was mixed with human
MMP-9 (5 μg/mL working concentration; Enzo Life Science) in a 384-well
plate at 37 °C in activity buffer (50 mM Tris, 150 mM NaCl, 5 mM CaCl2, 1 μm
ZnCl2) containing 1% BSA and monitored with a microplate reader (Spec-
troMax Gemini EM). Marimastat (Tocris Bioscience) was dissolved in DMSO
and used at a final concentration of 5 μM. Michaelis−Menten constants were
determined by assessing initial cleavage velocities at different substrate
concentrations followed by mathematical fit using GraphPad 5.0 (Prism).

In Vivo Imaging. All animal work was approved by the Committee on Animal
Care at Massachusetts Institute of Technology (protocol 0414–022-17). To
produce tumor xenografts, LS174T cancer cells (ATCC) were maintained in

10% FBS Eagle’s minimum essential medium (EMEM) and inoculated s.c. (5 ×
106 cells/flank) in NU/NU mice (Charles River). Tumors were allowed to grow
for ∼2 wk before administration of F1-PEG. Urinary kinetics was monitored by
whole animal imaging (IVIS, Xenogen). For absolute quantification of urine
fluorescence, urine samples were collected and quantified against VT-750 Glu–
fib standards on a Licor Odyssey scanner.

Pharmacokinetics. For organ distribution, VT-750-labeled PEG or NWs were
administered i.v. (5 μM, 200 μL PBS) before necropsy. Major organs were
placed in five volumes (wt/vol) of homogenization buffer (20 mM Tris, 1%
SDS, pH 8.0) and homogenized by gentleMACS Octo dissociator (Mitenyi
Biotec). VT-750 fluorescence in the supernatant was quantified against free
VT-750 by Licor scanner. For half-life measurements, fluorescent NWs or PEG
was administered i.v. (5 μM, 200 μL PBS) and ∼10 μL of blood was collected
by retroorbital draws using microhematocrit tubes (VWR). Samples were
transferred into 100 μL of PBS containing 5 mM EDTA and spun at 1,000 × g
to pellet blood cells. Fluorescent VT-750 levels were quantified against a
ladder of free VT-750 by Licor scanner.

Mathematical Modeling. Our system of ODEs was solved with MatLAB using
the differential equation solver ODE15s. The model was fitted to our ex-
perimental data by minimizing the square of the difference with a default
tolerance of 10−20. See SI Text for model equations.
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Compartment Model of Activity-Based Biomarker
To construct a mathematical model of the NP’s flow through the
body, we simplified the body into four separate compartments,
each governed by its unique set of transport equations. The com-
partments are listed below, with the rationale for their represen-
tation as well as methodology and clarification on the various
constants used.
A schematic of the model is shown as Scheme S1.

Compartment I: Blood. Following administration, we modeled the
concentration of NPs in the blood, dCNPplasma, to take into account
three primary actions. The first is clearance of the NPs in the
plasma with a half-life of t1/2, which depends on renal filtration
(kurine) and MPS (kMPS) clearance rates,

dCNPplasma =   − τ pCNPPlasma =−ðkurine + kMPSÞ pCNPPlasma [S1]

where CNP is the concentration of the NP in the plasma and

t1=2 =
lnð2Þ
τ

. [S2]

This clearance is represented in the first expression of Eq. S4
below. The second action taken into account is the transport of
NPs into the tumor bed by diffusion according to Fick’s Law of
Diffusion. Whereas Fick’s Law is usually written

dCNPplasma =  
P p Stumor p

�
CNPtumor −CNPplasma

�

Vplasma
[S3]

with the parameters P, STumor, and Vtumor representing the
permeability constant, surface area, and volume of the tumor,
respectively, we combined them into one parameter kNP

tumor.
Lastly, the third action is enzymatic degradation in the blood
due to both specific (i.e., tumor-secreted MMP9) and non-
specific protease activity. This was modeled according to
Michealis−Menten enzyme kinetics where the constants kcat
and KM were determined through in vitro experiments and
subsequent curve fittings. The commonly accepted Michaelis−
Menten derivation uses the quasi-steady-state approximation
(QSSA). QSSA is valid if [Eo/(So + Km)] << 1, which, for
our final fitted model (assuming 0–5 nM substrate concentra-
tion), results in an error (eta) term ∼0.1–0.3. Collectively, all
three actions are represented in the following differential
equation:

dCNPPlasma =−τ p ðCNPPlasma Þ− kNPtumor p ðCNPPlasma −CNPTumor Þ

−
kMMP9
cat pEblood

MMP9 pCNPplasma�
KMMP9
M +CNPplasma

� −
kbloodcat pEblood

n.s. pCNPplasma�
Kblood
M +CNPplasma

� .

[S4]

Compartment II: Tumor Bed.We modeled the concentration of our
NPs within the tumor by describing the compartment by two
equations, one describing dCNPtumor , the diffusion of the NP into
the tissue and its subsequent cleaving by tumor-associated pro-
teases, and the second equation describing dCRtumor , the pro-
duction of cleaved reporter and its subsequent transport out of
the tumor bed.
The first equation governing the concentration of the NP in the

tumor is shown below in Eq. S5. It was constructed through a

combination of Fick’s Law of Diffusion and the Michealis−Menten
equation for enzyme kinetics, the assumption being that the only
two dynamic changes to the concentration of the NPs in the tumor
are the rate of diffusion from blood and the rate of enzymatic
activity on the NP. Thus, the first equation for the diseased tissue
is as follows:

dCNPtumor = kNPtumor p
�
CNPplasma −CNPtumor

�
−
kMMP9
cat pEtumor

MMP9 pCNPtumor�
KMMP9
M +CNPtumor

� .

[S5]

The second equation in the tumor compartment is the comple-
ment to Eq. S5; it focuses on the concentration of reporter
cleaved from the NPs by protease activity and its subsequent
diffusion into the blood stream. These processes are described
as follows:

dCRtumor =
kMMP9
cat pEtumor

MMP9 pCNPtumor�
KMMP9
M +CNPtumor

� − kreportertumor p ðCRtumor Þ. [S6]

Here the Michealis−Menten expression is the same as in Eq.
S5 except it is of opposite sign (i.e., to represent production
instead of loss), and the second expression governs the diffusion
of the reporter out of the tumor bed. This equation omits
CRplasma in the second expression for simplification because the
reporter in the plasma is markedly diluted (by 2 mL of blood in
mice, or 5 L in humans) and cleared rapidly (half-life ∼18 min,
Table S1).

Compartment III: Blood. The ODE to model reporter levels in
blood is built from four expressions: (i) for the diffusion of the
reporter into the blood stream from the tumor, (ii) for re-
porters cleaved form the NP by nonspecific protease activity in
the blood, (iii) for clearance the reporter from blood (i.e.,
kidney filtration and MPS clearance), and (iv) for reabsorption
of reporter (e.g., from renal tubules). The first three expres-
sions are complements to expressions in Eqs. S4−S6 above.
The fourth expression models reporter clearance, and the last
expression models reporter reabsorption. The ensuing differ-
ential is

dCRPlasma = kreportertumor p ðCRtumor Þ+
kMMP9
cat pEblood

MMP9 pCNPplasma�
KMMP9
M +CNPplasma

�

+
kbloodcat pEblood

n.s. pCNPplasma�
Kblood
M +CNPplasma

� −
�
kreporterurine + kreporterMPS

�
pCRplasma

− kabsorb pCRplasma .

[S7]

Here, dCRplasma represents the rate of change of the concentration
of the reporter protein in the plasma, where CRplasma is the con-
centration of the reporter in the blood stream.

Compartment IV: Bladder. The bladder compartment is described
by a single rate equation on filtration with a first-order rate
constant kr. The resulting equation for the amount of the re-
porter secreted into the urine is
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dCRurine = kbladderurine pCRplasma . [S8]

Compartment Model of Abundance-Based Blood Biomarker.A schematic
of the blood biomarker model for CEA is shown as Scheme S2.
The concentration of CEA in blood is dependent on the tumor

secretion rate (PCEA) and the half-life of CEA (tCEA1=2 ),

dCEA
dt

=PCEA − αCEA [S9]

where
PCEA = ðDpRpFÞ=V; D is tumor cell density, R is CEA pro-

duction rate, F is retention factor, V is volume of blood, and
α =  lnð2Þ=tCEA1=2 .
At steady state,

dCEA
dt

=PCEA − αCEA= 0→CEAs.s. =
PCEAtCEA1=2

lnð2Þ . [S10]

Fig. S1. DLS measurements of the diameter of eight-arm PEG. Histogram of the size distribution of 40kD PEG (A) in PBS with an average diameter of 9.5 nm
and (B) in 50% FBS with an average of 8.4 nm.

Fig. S2. Renal filtration kinetics of PEG in living animals. (A) Representative whole animal fluorescent IVIS images of mice dosed with 10 kDa or 20 kDa PEG.
(B) Quantification of bladder fluorescence in mice given different molecular weight fractions of PEG (n = 3; error bars, s.d.).
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Fig. S3. Identifying model parameters in a mouse model of CRC. The constants for the mathematical model were extracted by fitting governing equations to
synthetic biomarker kinetics obtained in a mouse model of CRC. (A) Plasma (black) and urine (blue) kinetics following administration of 40 kDa PEG or
Glu–fib (n = 3; error bars, s.d.). Solid lines represent model predicted behavior. (B) Kinetics of NP transport into tumors normalized against ID and size of
tumors (n = 3; error bars, s.d.). (C ) Michaelis−Menten analysis of the catalytic efficiency of human MMP9 for F1-PEG (substrate is PLGVRG; n = 3; error
bars, s.d.). Km, Michaelis−Menten constant. (D) Model and experimental data of the kinetics of NPs and reporters in model compartments (n = 3; error
bars, s.d.). Solid lines represent model predicted behavior.

Fig. S4. Mathematical modeling of circulation time. (A) Schematic of compartments and governing equations. (B) Plasma concentration of fluorescent
PEG NPs following i.v. administration (n = 3; error bars, s.d.). (C) Bladder fluorescence of mice following i.v. administration of fluorescent Glu–Fib, PEG, or NWs
(n = 3; errors bars, s.d.).
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Fig. S5. Mathematical modeling of tumor accumulation. (A) Schematic of compartments and governing equations. (B) Major organ distribution of fluo-
rescently labeled PEG and NW following i.v. administration (n = 3; error bars, s.d.).

Fig. S6. In vitro MMP9 secretion rates by representative CRC cell lines. ELISA quantification of human MMP9 in conditioned media. Rates were normalized by
the number of tumor cells over a 24-h incubation period (n = 3; error bars, s.d.).

Fig. S7. Detection signals are due to blood and tumor activation at different times. The relative contributions to the detection signal from blood and tumor
activation. (A) At low concentrations of the ID, detection signals are largely derived from blood activation, with negligible contributions from the tumor
compartment. (B) Conversely, at high concentration of the ID, the signal from blood is nearly constant due to saturation of activity, revealing the underlying
kinetics of tumor activation that reaches a maximum rate 50–75 min after NP administration.
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Scheme S1. Compartment model for activity-based synthetic biomarkers.

Scheme S2. Compartment model for the blood biomarker CEA.
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Table S1. Nanomaterial and physiological parameters used in the model

Parameter Description Unit Value Range simulated

NP and reporter clearance rates N NP dose M 2.5 × 10−6 1.3–2 × 10−5

kNP
MPS rate of NP clearance by MPS min–1 6 × 10−4 —

kreporter
MPS rate of reporter clearance by MPS min–1 6.4 × 10−3 —

kNP
urine rate at which NP filters into urine min–1 1.7 x 10−5 —

kreporter
urine rate at which reporters filter into urine min–1 3.2 × 10−2 —

tNP1=2 plasma half-life of NP scaffold* hr 18.7 18–300 h
treporter1=2 plasma half-life of reporter* min 18.1 —

kabsorb rate of NP and reporter reabsorption min–1 2.9 —

Tumor permeability kNP
tumor rate of NP diffusion across tumor vessels min–1 1.4 × 10−4 1.4 × 10−4–1.4

kreporter
tumor rate of reporter diffusion across tumor vessels min–1 8.9 × 10−2 —

Tumor-specific protease activity ktumor
cat catalytic efficiency of MMP-9 for Q1† min–1 0.5 1.3 × 10−1–2.0

Ktumor
M Michaelis−Menten constant of MMP-9 for Q1 M 2.1 × 10−6 —

Etumor concentration of proteases in tumor M 7.2 × 10−7 1.8 × 10−7–2.9 × 10−6

Eblood
tumor concentration of shed proteases in blood M 7.2 × 10−8 1.8 × 10−8–2.9 × 10−7

Nonspecific protease activity kblood
cat catalytic efficiency for Q1 min–1 6.0 × 10−2 3.8 × 10−3–6.0 × 10−2

Kblood
M Michaelis−Menten constant for Q1 M 1.0 × 10−5 —

Eblood
n.s. concentration in blood M 4.0 × 10−6 2.7 × 10−7–4.0 × 10−6

CEA R CEA secretion rate ng per cells
per day

— 1.5 × 10−9–2.6 × 10−5

tCEA1=2 plasma half-life of CEA h 72 —

*t1=2 = ½1=ðkMPS + kurineÞ�lnð2Þ.
†Q1 = PLGVRG.
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