Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies

*Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
bComputational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
cCenter for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA
dDepartment of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
eDivision of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
fDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
gDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
hHubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Center Utrecht, Uppsalaan 8, 3584 CT Utrecht, The Netherlands
iHoward Hughes Medical Institute, Chevy Chase, MD 20815, USA
jKoch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

A R T I C L E I N F O

Article history:
Received 11 February 2016
Returned to author for revisions
13 April 2016
Accepted 15 April 2016

Keywords:
HCV
Single-molecule FISH
Viral replication
Host–virus interactions

A B S T R A C T

Hepatitis C virus (HCV) is a positive single-stranded RNA virus of enormous global health importance, with direct-acting antiviral therapies replacing an immunostimulatory interferon-based regimen. The dynamics of HCV positive and negative-strand viral RNAs (vRNAs) under antiviral perturbations have not been studied at the single-cell level, leaving a gap in our understanding of antiviral kinetics and host–virus interactions. Here, we demonstrate quantitative imaging of HCV genomes in multiple infection models, and multiplexing of positive and negative strand vRNAs and host antiviral RNAs. We capture the varying kinetics with which antiviral drugs with different mechanisms of action clear HCV infection, finding the NS5A inhibitor daclatasvir to induce a rapid decline in negative-strand viral RNAs. We also find that the induction of host antiviral genes upon interferon treatment is positively correlated with viral load in single cells. This study adds smFISH to the toolbox available for analyzing the treatment of RNA virus infections.

© 2016 Published by Elsevier Inc.

1. Introduction

Hepatitis C virus (HCV) chronically infects the liver hepatocytes of around 150 million people worldwide, and is a major cause of end-stage liver disease (Shepard et al., 2005). It is a single-stranded, positive sense RNA virus that uses its 9.6 kb genome as a template for both translation of the viral polyprotein and transcription of the negative strand RNA intermediate (Moradpour et al., 2007). Historically, treatment options for HCV have consisted of immunity-enhancing interferon treatment, which is associated with low cure rates and harsh side effects (Garber, 2011). Recently, highly potent direct-acting antivirals (DAAs) have been developed against multiple viral targets and which have led to near complete HCV cure rates in single and combination therapy (Afdhal et al., 2014; Kowdley et al., 2014). However, high costs and the demographics of infected patients have limited global access to these therapeutics, and the large population of infected but undiagnosed people means HCV will continue to be a public health concern (Paul et al., 2014; Holmberg et al., 2013) on which further study is warranted.

Much work has been done to elucidate HCV replication dynamics and its relationship with the host cell response (Paul et al., 2014; Marukian et al., 2011; Guidotti and Chisari, 2006; Yang et al., 2011; Li et al., 2015; Kazakov et al., 2015), especially its induction
of and evasion from hepatocyte innate immunity (Lemon, 2010; Li and Lemon, 2013). The regulatory mechanisms governing the levels of HCV viral RNA and proteins in individual infected cells are of particular interest, as HCV is generally non-cytopathic and infects a minority of hepatocytes in the liver (Li et al., 2015; Liang et al., 2009). To this end, temporal profiling of patient viral loads upon treatment have enabled the development of detailed quantitative models for viral replication and antiviral efficacy at the patient level (Dahari et al., 2005; Guedj et al., 2013, 2014; Neu mann et al., 1998; Perelson and Guedj, 2015; Rong and Perelson, 2013), but these studies do not provide the resolution necessary to measure viral and host transcriptional dynamics in single cells, which would provide unique information about the mechanism of host cell responses to infection and to antiviral therapies. Single-cell analyses have been used recently to advance our understanding of biochemical variation (Eldar and Elowitz, 2010; Raj et al., 2010; Raj and van Oudenaarden, 2009) at both basal levels and under perturbations such as infection (Snijder et al., 2009; Snijder and Pelkmans, 2011), and single-molecule RNA imaging (smFISH) in particular has uncovered extensive inter-cell differences in mRNA expression that underlie phenotypic variation (Raj and van Oudenaarden, 2009, 2008; Raj et al., 2008; Golding et al., 2005; So et al., 2011; Gandhi et al., 2011).

Quantitative, single-molecule techniques have begun to advance viral RNA (vRNA) imaging as well, with some reports applying single-mRNA imaging to the study of single viral genomes in individual viral particles (Jouvenet et al., 2009; Chou et al., 2013, 2014, 2016) and recently applying single-mRNA imaging to the study of single viral genomes in individual infected cells (Jouvenet et al., 2009; Chou et al., 2013, 2014, 2016), and single-molecule RNA imaging (smFISH) in particular has uncovered extensive inter-cell differences in mRNA expression that underlie phenotypic variation (Jouvenet et al., 2009; Chou et al., 2013, 2014, 2016). These studies do not provide the resolution necessary to measure viral and host transcriptional dynamics in single cells, which would provide unique information about the mechanism of host cell responses to infection and to antiviral therapies. Single-cell analyses have been used recently to advance our understanding of biochemical variation (Eldar and Elowitz, 2010; Raj et al., 2010; Raj and van Oudenaarden, 2009) at both basal levels and under perturbations such as infection (Snijder et al., 2009; Snijder and Pelkmans, 2011), and single-molecule RNA imaging (smFISH) in particular has uncovered extensive inter-cell differences in mRNA expression that underlie phenotypic variation (Raj and van Oudenaarden, 2009, 2008; Raj et al., 2008; Golding et al., 2005; So et al., 2011; Gandhi et al., 2011).

2. Materials and methods

2.1. Cell culture

Huh-7 (Nakabayashi et al., 1982), Huh-7.5 (Blight et al., 2002), and a clone of Huh-7.5 stably integrating the NS3–4A activity reporter (Jones et al., 2010) were all propagated in a DMEM with L-glutamine (Cellgro)-based medium containing 100 U/mL penicillin, 100 μg/mL streptomycin (Cellgro), and 10% FBS (Gibco). Primary human fetal liver HFLCs) were isolated and plated as described (Andrus et al., 2011). Cultures were maintained in Hepatocyte Defined Medium (HDM) (BD Biosciences) plus l-glutamine and antibiotics. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iHLCs) were derived and cultured as described (Schwartz et al., 2012; Si-Tayeb et al., 2010). For smFISH experiments, cultures were grown on 12 mm, circular, No. 1 glass coverslips (VWR) in 24-well plates. For Huh-7.5s, attachment to coverslips was improved by coating with rat tail collagen I (BD Biosciences) at 50 μg/mL in water for 1 h at 37 °C and then rinsing prior to seeding. HFLC attachment was enhanced by first coating with collagen and subsequently with poly-L-lysine hydrobromide (Sigma) at 100 μg/mL for 45 min at room temperature and then rinsing prior to seeding. To put iHLCs on coverslips, they were treated with accutase (Millipore) for 15–20 min until they balled up. Gentle pipetting was performed to remove the cells, and they were then plated onto Matrigel-coated coverslips.

2.2. Hepatitis C virus infection, antiviral treatment, and interferon treatment

Hepatoma and iHLC infections were performed with a replication-competent Gaussia luciferase-expressing reporter virus based on the efficient Jc1 HCV construct (Jc1-Glu) (Pietschmann et al., 2006); stocks of this reporter were obtained as described (Marukian et al., 2008). HFLC infections were performed either with this Jc1 reporter or with an adapted HCV called J6/JFH Clone 2 (Walters et al., 2009). Titration on naïve Huh-7.5s was used to determine 50% tissue culture infectious dose (TCID50) of stocks of these strains of HCV. For infection experiments, we employed three standard models of HCV infection: the Huh-7.5 hepatoma cell line (as well as the associated Huh-7 cell line and the clone of Huh-7.5 stably expressing the NS3–4A activity reporter as described below) (Lindenbach et al., 2005), primary human fetal hepatocytes (Andrus et al., 2011), and induced pluripotent stem cell-derived hepatocyte-like cells (Schwartz et al., 2012). Stocks were diluted in the appropriate culture medium to make an inoculum with final titer typically in the 10⁶–10⁷ TCID50/mL range (MOI ranging from ~0.2–2). Cultures to be infected were incubated in inoculum for varying durations depending on the experiment. Subsequently, medium was typically changed every 24–48 h unless otherwise noted, and cultures were washed with culture medium three times between medium changes. To demonstrate that smFISH imaging of HCV genomes is replication-dependent, the HCV non-structural protein 5B (NS5B) polymerase inhibitor 2′-C-methyladenosine (2′CMA), with EC50 = 27 nM (Lindenbach et al., 2005), was used to supplement both the inoculum and subsequent fresh medium at a concentration of 80 EC50 (final 0.1% DMSO) and compared to a DMSO-only control. For antiviral experiments, human interferon β (IFN-β) (Calbiochem, used at 100 U/mL for comparative antiviral experiments, and 10 U/mL for host response experiments), sofosbuvir (10 μM; EC50 ~20 nM (Health AGDo, 2014)), daclatasvir (1 nM; EC50 ~20 μM (Agency, 2014a)), and simprevir (400 nM; EC50 ~10 nM (Agency, 2014b)) were used to treat cells at the above concentrations (chosen as 10×EC50 based) in a final concentration of 0.1% DMSO, at indicated time points either before or after infection as described.

2.3. Single-molecule RNA FISH (smFISH)

smFISH on culture samples is performed as described in detail (Raj et al., 2008). All protocols are also available online at http://www.singlemoleculefish.com. Briefly, culture samples on coverslips are fixed in 4% w/v paraformaldehyde (Electron Microscopy Sciences) in PBS for 10 min After washing with PBS, samples can be maintained in PBS for at least one week at 4 °C. Six hours prior to hybridization with probes, samples are permeabilized by placing in 70% EtOH in water at 4 °C. Coverslips are incubated in hybridization buffer containing a probe set targeting the RNA species of interest (BioSearch Technologies; http://www.singlemoleculefish.com; sequences in sets shown here are provided in Supplemental information which are probe sets of 48 probes targeting the Gaussia-luciferase-expressing HCV reporter described above; we have successfully quantified HCV with various probe sets (Supplementary information) each probe of which is coupled to desired fluorescent molecule (typically Alexa594 or Cy5).

smFISH on culture samples is performed as described in detail (Raj et al., 2008). All protocols are also available online at http://www.singlemoleculefish.com. Briefly, culture samples on coverslips are fixed in 4% w/v paraformaldehyde (Electron Microscopy Sciences) in PBS for 10 min After washing with PBS, samples can be maintained in PBS for at least one week at 4 °C. Six hours prior to hybridization with probes, samples are permeabilized by placing in 70% EtOH in water at 4 °C. Coverslips are incubated in hybridization buffer containing a probe set targeting the RNA species of interest (BioSearch Technologies; http://www.singlemoleculefish.com; sequences in sets shown here are provided in Supplemental information which are probe sets of 48 probes targeting the Gaussia-luciferase-expressing HCV reporter described above; we have successfully quantified HCV with various probe sets (Supplementary information) each probe of which is coupled to desired fluorescent molecule (typically Alexa594 or Cy5).
Multiple probe sets coupled to spectrally distinct probe sets can be hybridized to sample simultaneously for multiplexed imaging. Finally, samples are washed, during which time fluorescent molecules targeting antigens of interest or immunofluorescence antibodies can be incorporated as described (Raj et al., 2008), and subsequently mounted for imaging. In this study, endoplasmic reticulum staining was performed using the ER-ID Green assay kit (Enzo Life Sciences), and HCV non-structural protein 5A (NS5A) immunostaining was performed using mouse anti-NS5A (9E10) and goat anti-mouse Alexa Fluor 594 (Invitrogen).

2.4. Microscopy and image analysis

Standard epifluorescence microscopy can ascertain smFISH spots as described (Raj et al., 2008). All images were taken with a Nikon Ti-E inverted fluorescence microscope equipped with a 100X oil-immersion objective and a Photometrics Pixis 1024 CCD camera using MetaMorph software (Molecular Devices, Downingtown, PA). Z-stacks were obtained as described (Raj et al., 2008); typically, 20–30 planes separated by 0.4 μm was sufficient to comprehensively cover the target cells. Images presented as slices from the Z-stack or maximum intensity projections as described. Images were analyzed to extract data we show using custom software written in MATLAB (MathWorks), which can identify spots on individual channels, assess co-localization, and quantify spots. Briefly, a Laplacian of Gaussian (LoG) filter is used to filter out slowly-varying background noise and spots outside of the size and shape range for fluorescent foci (e.g., autofluorescent cellular components), and spot counts are determined by thresholding the filtered image, where the threshold is determined empirically by minimizing the sensitivity of spot counts to changes in threshold. Quantification has an upper-bound for each cell that depends on cell volume (height and cross-section), subcellular distribution of target RNA, quality of imaging, and signal-to-noise ratio. At later time-points post infection (~48 h), the number of positive strands as visualized using an Alexa594 fluorophore probe set typically was deemed too large to be counted computationally without significant error in a small portion of the cells. For these cells, an estimate was obtained by integrating the fluorescence intensity in a sum projection of the Z-stack for the cell and subtracting the local background, and comparing this quantity with that of countable cells to extrapolate an estimate (Tan and van Oudenaarden, 2010). In order to obtain spot intensity distributions, we used custom-written MATLAB software to reduce the stacked images to two-dimensional images by maximum projection, and fitted the fluorescent spots to a 2D Gaussian as the model for the point spread function. Single transcript intensity was defined as the integrated intensity of the spot using the two-dimensional Gaussian mask algorithm. Structured illumination microscopy (SIM) images were performed using a DeltaVision OMX 3D Structured Illumination Microscope (Applied Precision, Issaquah, USA). Solid state lasers (405, 458, 593 nm) provided wide-field illumination and multi-channel images were captured simultaneously using 3 Photometrics Cascade (Photometrics, Tucson, USA) back-illuminated EM-CCD cameras. All data capture used an Olympus UPlanSapo 100 × 1.4NA oil objective and standard excitation and emission filter sets. Raw images were processed and reconstructed using Volocity software (Perkin Elmer, Waltham, MA).

2.5. HCV non-structural protein 3–4A (NS3–4A) activity reporter

As previously described (Jones et al., 2010), we developed a real-time fluorescence reporter of HCV infection based on monitoring NS3–4A protease activity. A clone of Huh-7.5 stably expressing the RFP-NLS-IPS was used to determine the correlation between smFISH imaging of HCV genomes and NS3–4A protease activity.

2.6. Strand specific qPCR of HCV RNA

Non-infectious positive strand standards were constructed by digesting a plasmid containing J6/JFH1 “Clone 2” virus (Catanese et al., 2013) with SacI (New England Biolabs) and religating the backbone. After XbaI (New England Biolabs) digestion, this DNA was used in a T7 transcription reaction to yield a 3516nt RNA standard with intact 5’ and 3’ ends. For minus strand standard synthesis, we employed an overlap PCR approach to flip the orientation of the positive strand standard while preserving the appropriate ends. Generated RNA stocks of both strands were equilibrated via nanodrop to a calculated concentration of 10⁶ copies/μl. Standard curves were generated by serially diluting the RNA standards in the presence of fixed 50 ng amounts of total RNA from uninfected Huh-7.5 cells. For qPCR of unknown samples, RNA was isolated using the RNeasy Plus Mini kit (Qiagen) from infected Huh-7.5 cells. Approxi- mately 50 ng of total RNA was then used for PolyAdenylation using E. coli PolyA Polymerase (New England Biolabs) using 1 mM ATP, 3 U E-PAP and 7.5 U RNASin Plus RNase inhibitor (Promega, Madison, WS) in a 5 μl total reaction volume, and incubated for 10 min at 37 °C followed by 20 min at 65 °C to inactivate the enzyme. The resulting RNA underwent reverse transcription using Superscript III (Life Technologies); to the 5 μl of poly-A tailed RNA, 2.5 pmol of tagged RT primer (5′-GAATCGGCCACTAGTACGAAGCTGACTCCCT-AAGTTTTTTTTTIIIIIIIIIIIIIIIVN-3′) was added along with 0.5 μl of 10 mM dNTPs, and incubated at 65 °C for 5 min before placing on ice. To this mixture the RT mix was added per reaction consisting of 1× RT Buffer, 50 mM DTT, 2.5 U RNasin Plus RNase inhibitor and 100 U Superscript III, to a final RT reaction volume of 10 μl. Samples were incubated at 55 °C for 10 min, 60 °C for 50 min and 85 °C for 5 min and held at 4 °C. Inferred from input RNA amounts, approximately 2 ng of the resulting cDNA was used per subsequent qPCR reaction using 2× FastStart SYBRGreen qPCR mix (Roche) following the manufacturer’s instructions and using 2.5 pmol primer for the tag sequence (GAATCGGCCACCTAGTACCACTG) and either the positive strand primer (CTGCTCTCTGACAGATGTTG) or the negative strand primer (CTCCGTGAAACAGATTCTTCTCTT) also at 2.5 pmol. For convenience in some experiments, we adapted the miScript RT kit (Qiagen) that employs a polyA-tailing and RT step with the above RT primer in a single reaction, to produce the necessary input for subsequent qPCR using HCV specific primers and the tag primer. qPCR was carried out using iQ5 thermal cyclers (BioRad) using the following cycling parameters: 95 °C for 10 min, 40 cycles of [95 °C for 15 s, 58 °C for 15 s, 72 °C for 20 s collecting fluorescence], 95 °C for 2 min, 55 °C for 2 min followed by fluorescence measurement for each 0.5 °C interval increase to 95 °C for the generation of melt curves. Non-strand specific qPCR for HCV RNA was carried out using MultiCode-RTx technology (Eragen Biosciences) as described previously (Mulligan et al., 2009).

2.7. Statistical analysis

Error bars plotted as standard deviation (s) or as standard error of the mean (SEM) as noted. Statistical analysis performed
as described – two-tailed t test, one-way ANOVA with Tukey’s post-test, linear regression, and F test for determining positivity of slope performed using GraphPad Prism 5 (GraphPad Software). Pearson correlation coefficients obtained using MATLAB (The MathWorks).

3. Results

3.1. Specific and sensitive single-molecule imaging of genomic vRNA

We first tested our ability to perform mRNA smFISH (Raj et al., 2008) on HCV, by developing fluorophore-tagged, short
oligonucleotide probe sets for HCV RNA, which localize to produce diffusion-limited spots under standard epifluorescence microscopy after being delivered to fixed and permeabilized infected cells (Fig. 1A). To test the specificity of the method, we performed single-molecule vRNA imaging on HCV-infected Huh-7.5 cells (Blight et al., 2002; Lindenbach et al., 2005) using a Cy5 probe set targeting the 5′ half of the strand, and an Alexa594 probe set targeting the 3′ half, for both positive (+) and negative (−) strands. While smFISH performed on uninfected hepatoma cultures (Fig. S1A) or infected cultures without probes (Fig. S1B) both revealed no spots, infected cultures imaged simultaneously with both Cy5 and Alexa594 probe sets for either the positive or negative strand revealed diffusion-limited spots in both channels (Fig. 1B), with co-localization frequencies (> 80%) (Fig. 1B) similar to what has been observed for mRNAs (Raj et al., 2008). In order to assess whether vRNA spots represent single genomic strands, we employed a method previously reported for single molecule imaging whereby we integrated total spot fluorescence for many spots of both the spot intensity was unimodal (Mutch et al., 2007), which would suggest spots are mostly single genomes. We found that the distribution of spot intensities was unimodal (Fig. 1C) and close to lognormal, suggesting that most spots represent single-molecule events, as previously seen with this technique (Vargas et al., 2005; Shalek et al., 2013), although the brightest data points within the distribution (at the far right of the X axis) may represent foci of viral transcription. Because HCV positive- and negative-strand vRNA can exist as duplexed dsRNA, which may not be accessible to our ssDNA probes, we examined the ability of smFISH to capture duplexed vRNAs by transfecting pre-complexed HCV dsRNA as a positive control and quickly fixing and imaging samples. We found that duplexed dsRNA is still detected as colocalized positive- and negative-strand vRNA, likely due to the denaturing hybridization conditions, suggesting that the smFISH protocol allows for probe binding to dsRNA (Fig. S1L).

Throughout the period we sampled, the number of HCV RNA spots increased with time post infection (Fig. 1D), and was greatly reduced in the presence of an antiviral compound, the HCV non-structural protein 5B (NS5B) polymerase inhibitor 2′C-methyladenosine (2′CMA) (Fig. 1E). We also compared the results obtained using vRNA smFISH to those using a highly sensitive, single-cell fluorescent reporter of HCV infection that discriminates infected from uninfected cells based on the protease activity of HCV non-structural protein 3A4 (NS3A4) (Jones et al., 2010). In this assay, specifically in NS3A4 activity (reporter negative), fluorescence is localized to the cytosol, whereas nuclear fluorescence is induced in infected cells that exhibit active NS3A4 (reporter positive), which cleaves the reporter to expose a nuclear localization signal, resulting in nuclear transport of the fluorescent tag. By combining these two methods, we observed significantly more smFISH spots present in reporter positive than reporter negative cells (Fig. 1F), providing an independent single-cell measure of infection to correlate with our vRNA imaging technique. Amongst the reporter negative cells, a range of smFISH spot counts were detected, suggesting that vRNA smFISH is even more sensitive than an enzymatic viral protein-driven reporter, and thus may detect infection at a lower viral load.

Since smFISH maintains spatial information and is compatible with most fluorescent imaging modalities and co-stains, we next tested whether we could perform smFISH of HCV using super-resolution three-dimensional structured illumination microscopy (3D-SIM) (Schermelleh et al., 2008). We observed co-localization of HCV positive strands jointly with the endoplasmic reticulum (ER), with which viral replication complexes associate (Fig. S1C) (Gosert et al., 2003; El-Hage and Luo, 2003), and also with HCV non-structural protein 5A (NS5A) (Fig. S1D). We also sought to extend the utility of our method by testing it using authentic host cells, given that HCV host–virus interactions are more relevant when studied in non-transformed cell lines. To this end, we attempted smFISH using two primary hepatocyte models of HCV infection – induced pluripotent stem cell (iPS)-derived hepatocyte-like cells (iHLCs) (Schwartz et al., 2012) and primary human fetal liver cells (HFLCs) (Andrus et al., 2011). Infected iHLCs (Fig. S1E) and HFLCs (Fig. S1G), but neither uninfected iHLCs (Fig. S1F) nor uninfected HFLCs (Fig. S1H) demonstrate positive strand vRNA smFISH spots, with fewer strands detected in the presence of 2′CMA (Fig. S1I). While only 40% of HFLCs were reporter positive in replicate samples, at least one viral genome was detected in 93% of HFLCs, suggesting improved sensitivity of the smFISH method (Fig. S1J). Because virus-infected cells can undergo confection or super-infection, we wanted to determine if our smFISH method could facilitate orthogonal imaging of multiple viral variants. To do this, we synthesized a fluorescently-tagged set of probes complementary to the genomic sequence of a tagRFP reporter inserted into a reporter HCV genome, and demonstrated specific targeting of this exogenous viral sequence (Fig. S1K) as well as targeting of an exogenous luciferase viral reporter (data not shown).

3.2. Single-cell, multiplexed quantification of viral positive and negative strands enable studies of the viral life cycle

Having established smFISH as a specific and sensitive method to visualize HCV infection in a range of hepatic cells, we next applied the technique to study viral replication dynamics by simultaneously enumerating positive and negative strand spots within individual cells. Huh-7.5 cells were infected with HCV and fixed at various hours post infection (hpi) (Fig. 2A). Multiplexed imaging was performed using two spectrally distinct probe sets, each targeting a different vRNA strand (Fig. 2A). After point the resulting images (Fig. 2B) yielded a single-cell joint distribution of positive and negative strand spot counts that evolved over time. We averaged positive and negative strand data over many cells (Fig. 2C) to measure how average negative-to-positive strand ratios (NPSR) vary over time (Fig. 2C, Inset). We also

Fig. 1. Specific and sensitive imaging of individual molecules of genomic viral RNA (vRNA). (A) Schematic illustration of single-molecule RNA FISH (smFISH) method (Raj et al., 2008). A set of 48 DNA FISH probes (20 nucleotides/probe) that are each end-labeled with one fluorophore (red) and that are complementary to non-overlapping portions of the target RNA (Left) are introduced to fixed and permeabilized cells. Hybridization of probes to the target RNA (Center) produces sufficient local fluorescence for the RNA molecule to be visualized as a diffraction-limited spot using standard epifluorescence microscopy (Right); spots are detected only once a minimum number of probes (typically ~20 (Raj et al., 2008)) bind the target. (B) Co-localization of diffusion-limited spots in infected Huh-7.5 hepatoma cultures (16 h post infection) was detected by simultaneously introducing two spectrally-distinct probe sets (coupled to Cy5 and Alexa594 respectively) targeting different portions of the same genomic vRNA strand. Typical images of positive (Left, Z-stack projection, scale bar = 5.0 μm; Inset, ~2x zoom) and negative (Center, Z-stack projection, scale bar = 4.0 μm; Inset, ~2x zoom) strand spots shown. Percentage of Cy5 and Alexa594 spots that co-localize with the other channel are shown for both strands (Right). (C) The integration of the range of spot intensities observed are presented as a histogram of the distribution of intensities for spots measured 24 h post infection (hpi) for both strands. (D) Number of positive strand spots in individual cells at 12 and 24 hpi (red line – mean); Difference was statistically significant: ***p < 0.0001 (two-tailed t test). (E) Number of positive strand spots in individual cells in DMSO or the HCV NS5B polymerase inhibitor 2′CMA at 24 hpi (red line = mean). Difference was statistically significant: ***p < 0.0001 (two-tailed t test). (F) NS3A4 activity reporter (Jones et al., 2010) deems cells infected based on nuclear fluorescence and uninfected based on cytosolic fluorescence. The Huh-7.5 Clone 8 line which carries this reporter stably was used to compare NS3A4 imaging with smFISH. Sample images from the same field of view for both NS3A4 reporter (Left, scale bar = 18.5 μm) and smFISH (Center, 18.5 μm) are shown. Number of positive strand spots in reporter negative or reporter positive cells 24 hpi are provided (red line = mean) (Right). ***p < 0.0001 (two-tailed t test).
present single-cell data for viral RNAs and NPSR dependence on infection load at 48 hpi (Fig. 2D). While significant inter-cell heterogeneity was detected, positive and negative strand vRNAs were correlated at the single-cell level. Because the Jc1-Gluc virus is replication-competent, the low-strand spot cells at late timepoints may represent cells newly infected by virus produced in culture.

Infected cells also cluster bimodally into subpopulations bearing low or high strand counts (Fig. S2).

In order to cross-validate our vRNA measurements with an independent assay, we developed a new PCR assay that improves our capacity to discriminate between positive and negative strand vRNAs, since the application of previously published methods...
yield NPSR values for HCV that range widely from 1:10 to 1:1000, and these readings have been confounded by both interference from the opposite strand, and detection of incomplete vRNAs (McGuinness et al., 1994; Revie and Salahuddin, 2011; Agnello et al., 1998; Komurian-Pradel et al., 2004; Lanford et al., 1995; Lohmann et al., 1999). In this updated assay, total RNA is poly-A tailed, after which a tag oligo-dT anchored primer is used to reverse transcribe from the nascent tail (Fig. S3A); the resulting complementary DNA (cDNA) is then used for qPCR, employing a primer for the tag sequence and an HCV-specific primer for the 3′ end of the target vRNA. This assay offers two main updates relative to previously employed tagged assays (Agnello et al., 1998; Komurian-Pradel et al., 2004; Lanford et al., 1995), in that strand specificity is introduced at the PCR stage, and amplicons are generated that straddle the 3′ ends of completed positive and negative strand products of the viral polymerase. Using standards for both strands individually, we confirmed that the assay is sensitive over 8 logs for either strand (Fig. S3B). In addition, we used mixtures of positive and negative strand standards to determine that both positive or negative strand spots per cell were calculated at each timepoint, and the resulting values for each antiviral treatment were normalized relative to the number of positive and negative strands in DMSO controls (n=35–85 per data point), to give a population-wide perspective of the impact of drug treatment on each sense of viral RNA. Data are plotted as mean ± SEM.

3.3. smFISH elucidates the single-cell response of infected cells to antiviral drugs

After validating the strand-specific and quantitative data gleaned via smFISH of vRNA, we sought to determine whether this same technique could be used to detect differing antiviral signatures. To this end, we investigated the impacts of four compounds that function via distinct mechanisms of action: IFNβ, a virus-induced host signaling protein that induces interferon-stimulated genes (ISGs) with antiviral activity; and three direct-acting antivirals: sofosbuvir (SOF), a nucleotide analog and inhibitor of the HCV polymerase NS5B; daclatasvir (DCV), an inhibitor of the multifunctional HCV protein NS3A; and simeprevir (SIM), an inhibitor of the HCV protease NS3–4A. We infected Huh-7.5 cells with HCV for 4 h, and at 24 hpi, cultures were treated with each of the compounds and fixed at 6, 12, 16, and 24 h post dosing (hpd) for smFISH analysis (Fig. 3A). The single-cell bivariate data for positive and negative strands (Fig. 3B) reveal varied response characteristics between drug treatments, and in particular the cellular response to IFN treatment appears more heterogeneous in its strand skew than the response to DAA treatment.

To enable the drawing of more specific inferences regarding drug effects and mechanisms, we aggregated the data and normalized the responses relative to the DMSO control (Fig. 3C) to

Fig. 3. Kinetics of vRNA expression during antiviral drug treatment. (A) Schematic illustration of experiment. Huh-7.5 hepatoma cells were inoculated with HCV for 4 h, and then drug treatment was started at 24 hpi. Cells were fixed for staining (triangles) at various times post infection (hours post dosing (hpd)−hpi − 24) (Left). Multiplexed imaging was performed by simultaneously employing an Alexa594 probe set for the positive strand and a Cy5 probe set for the negative strand (Right). (B) Scatter plots of positive and negative strand spot counts per cell, over time (6, 12, 16, and 24 hpd) during treatment with each antiviral compound (IFN-beta, SOF, SIM, DCV), or DMSO control. Linear best-fit lines for each condition are included to aid in visualization of HCV viral strand skew in response to each antiviral. (C) The average number of positive or negative strand spots per cell were calculated at each timepoint, and the resulting values for each antiviral treatment were normalized relative to the number of positive and negative spots in DMSO controls (n=35–85 per data point), to give a population-wide perspective of the impact of drug treatment on each sense of viral RNA. Data are plotted as mean ± SEM.
yield a strand-specific viral decay time course for each treatment. All 4 treatments produced a noticeable impact on viral RNAs by 24 hpd; however, the kinetics of viral decay varied significantly between groups. Response to IFN was delayed relative to the DAA treatments, and among the DAAs, patterns of strand decay varied greatly, with concordant decay between positive and negative
strands upon SOF treatment, but rapid, selective negative strand depletion upon DCV treatment.

3.4. Single-cell, multiplexed imaging of viral strands and host genes track host–virus interactions

Since interferon-mediated clearance depends on host cell responses, and our single-cell observations revealed cell-to-cell variability in viral clearance upon interferon treatment, we sought to look more directly at this phenomenon by harnessing the capacity of smFISH to simultaneously measure viral RNA and host mRNA in individual host cells (Fig. 4A). IFN stimulation initiates a JAK/STAT signaling cascade that culminates in the induction of antiviral interferon-stimulated genes (ISGs) (Schoggins et al., 2011; Theofilopoulos et al., 2005; Sadler and Williams, 2008). We developed smFISH probe sets that target mRNA transcripts for two prototypical ISGs with anti-HCV activity (Metz et al., 2013): EIF2AK2/PKR, which phosphorylates EIF2α to reduce host translation and inhibit HCV (Garaigorta and Chisari, 2009; Chang et al., 2006), and ISG15, a multifunctional protein which “ISGylates” proteins for targeted degradation (Chen et al., 2011). As a positive control, uninfected Huh-7.5 cells treated with IFN-β for 6, 12, or 24 h were fixed and assayed by smFISH. As expected, the baseline EIF2AK2 and ISG15 transcript levels were visualized as diffraction-limited spots that rapidly increased in number upon administration of IFN-β (Figs. S4A and B, and 4D), and reached a stable plateau for at least 6–24 h (Fig. S4B). Notably, despite uniform administration of IFN-β, ISG expression varied significantly between individual cells in the treated population. In order to determine whether the induction of ISG expression upon IFN treatment correlated with vRNA levels, infected Huh-7.5 cells were fixed for multiplexed imaging of HCV vRNA with either ISG15 or EIF2AK2, before or after a 12 h exposure to IFN-β (Fig. 4B). In the absence of IFN-β, hepatoma cells did not upregulate ISG mRNAs upon infection (Fig. 4D), and no correlation was observed between ISG mRNA and HCV vRNA levels (Fig. 4D, gray). This observation is consistent with reports of a defective RIG-I sensing of HCV vRNA in Huh-7.5s (Sumpter et al., 2005). However, after treatment with exogenous IFN-β, while strand counts were not significantly reduced (Fig. S4C), the levels of both ISG mRNAs positively correlated with HCV infection load (Figs. 4C and D, red, S4D), and ISG levels observed in poorly infected cells were similar to those detected in uninfected controls (Fig. 4D, red). To better visualize this trend, we binned individual cells into groups with “low” and “high” levels of infection (Fig. S4E), and observed that only highly infected cells harbor significantly more ISG mRNAs than uninfected controls (Fig. S4F). These data suggest that although HCV can subvert hepatocyte innate immunity in multiple ways (Horner and Gale, 2009; Heim et al., 1999; Lin et al., 2006), viral products stimulate, rather than repress, ISG transcription upon IFN treatment.

4. Discussion

In this study, we demonstrated sensitive, specific, and quantitative imaging of HCV and other viral RNAs (tagRFP reporter sequence, Fig. S1K; DENV-2, data not shown). We demonstrated multiplexing of positive and negative vRNA strands, vRNA with host ER and viral proteins, and vRNA with host cell mRNAs (Figs. S1C and D; 2–4). Furthermore, we highlighted the applicability of this approach to primary cell infection models (Fig. S1E–H) that more closely recapitulate physiological infection of quiescent cells with normal host gene expression and intact innate immune signaling (Sumpter et al., 2005; Duranel and Zoulim, 2007; Mee et al., 2008). While a previous smFISH analysis of HCV (Shuilla and Randall, 2015) focused on colocalization of vRNAs with ribosomes and viral proteins, here we extend the application of vRNA smFISH to the study of host-pathogen interactions downstream of IFN signaling, and viral clearance upon antiviral treatment.

Using our specific and quantitative approach, verified using our novel PCR-based bulk assay (Fig. S2), we demonstrate that while the general understanding has been that positive strands greatly outnumber negative strands in ssRNA(+)/v viruses (Ahluquist et al., 2003; Buck, 1996), we find that this ratio varies significantly with time. We observed that the mean single-cell NPSR starts low at 4 hpi, consistent with early virion unpacking and minimal replication, and in Huh-7.5 cells this ratio increases, followed by possible tapering thereafter (Fig. 2C, Inset). The data at 48 hpi shows that NPSR appears negatively correlated with positive strand spots at the single-cell level until approximately ~200 positive-strand spots, with a more stable distribution above this number (Fig. 2D, Inset), mirroring the population-scale NPSR trends. One hypothesis is that negative strand production may peak at lower single-cell viral loads in order to produce the templates that enable subsequent rapid replication of positive strands, followed by a transition from transcription-dominant to translation-dominant production of new viral species from positive strand vRNAs. Since the Jc1–Gluc virus produced in culture can reinfact Huh-7.5 cells, it is possible that cells with low positive-strand spot counts at late timepoints like 48 hpi represent secondary infection events from culture-derived virus. In this case, the more stable NPSR at higher positive-strand counts could indicate the greater stability of this ratio at longer times post-infection in a given cell.

The high-resolution strand-specific data enabled by smFISH also provides interesting information relating to HCV antivirals and their mechanisms of action (Fig. 3B and C) (Guedj et al., 2014, 2013; Rong and Perelson, 2013). The delayed, robust response to IFN, for example, may be due to the time required for cellular antiviral proteins to be induced, transcribed, and translated upon IFN treatment. Furthermore, while treatment with the polymerase inhibitor, SOF, led to a balanced decay of both positive and negative strands, by blocking template transcription from both positive and negative strand vRNAs, the NS5A inhibitor DCV caused a skewed depletion of negative strand vRNAs with a shorter-than-expected half-life of 3 h (Guedj et al., 2013, 2013; Quinkert et al., 2005; Binder et al., 2013). Indeed, across all treatments, very few cells exhibited a strand skew that favored negative strand vRNAs. This finding may suggest the negative strand is intrinsically less stable, a hypothesis that is consistent with previous reports suggesting the negative strand is less stable due to fewer interactions with miR-122 (Li et al., 2015; Shimakami et al., 2012) or other factors. However, since both NS5A inhibitors and HCV protease inhibitors have been shown to inhibit viral assembly and/or release (Guedj et al., 2013; McGivern et al., 2014), the measured positive strand decline with these drugs (DCV and SIM) may be slowed somewhat by retention of otherwise-exported positive strand vRNAs.

The single cell data collected will likely be compatible with integration into existing computational frameworks that model HCV replication and treatment (Dahari et al., 2005; Guedj et al., 2014; Binder et al., 2013; Dahari et al., 2007, 2009), where the rates of strand-specific vRNA decay can shed light on which components of the viral life cycle are affected by therapeutics. For example, we are intrigued by the rapid effects of DCV on HCV negative strand vRNA, which had not been identified in a previous non-strand specific analysis of DCV temporal effects (Guedj et al., 2013). Considering this result, and based on a sensitivity analysis performed in a recent computational HCV model (Binder et al., 2013), it would be interesting to explore whether inhibitory effects of DCV on NS5A-associated replication complexes serve as important drivers of rapid negative strand decline, as NS5A recolocalization from RCs (Lee et al.,
may sensitize negative strands to rapid degradation. While the DAAs employed here were selected based on their known viral targets, future smFISH-mediated studies of post-treatment viral kinetics may provide insights into antiviral mechanism of action by matching strand-specific vRNA kinetic profiles to drugs with known mechanism, and offer a framework for the comparison of novel drugs or drug combinations.

Compared to the DAAs, IFN produces a more variable response to HCV across a population of individual cells, which we aimed to dissect in more detail by simultaneously measuring vRNAs and host antiviral mRNAs induced by IFN treatment. HCV possesses numerous ways to evade hepatocyte innate immunity, both up- and downstream of cell-intrinsic Type I IFN production, such as the cleavage of MAVS and TRIF by the NS3–4A protease, induction of SOCS3 to block JAK/STAT signaling by HCV Core, and induction of PP2A and PKR which also block ISG transcription and translation, respectively (Horner and Gale, 2009; Gale and Foy, 2005; Wong and Chen, 2014). Because HCV can dampen the IFN cascade at numerous stages, which may confound interpretation of its inhibitory effect, we used smFISH to specifically look at whether HCV prevented accumulation of ISG transcripts soon after IFN treatment. In stark contrast, we found that after treatment with exogenous IFN–β, ISG mRNAs positively correlated with HCV infection load (Figs. 4C and D, and S4D). While the innate immune axis in Huh-7.5 cells is known to be compromised in RIG-I signaling (Sumpter et al., 2005), our analysis takes place downstream of IFN–β signaling and corroborates recent results in treatment-naïve, HCV-infected patient liver tissue, where hepatocytes positive for HCV vRNA by bDNA-FISH also contained significantly more IFI17 mRNA (Wieland et al., 2014). It is possible that within our experimental timeframe, the effect of HCV upregulation of SOCS3 and other inhibitors of JAK/STAT signaling is not yet evident, but also highlights the fact that high ISG transcript levels do not correlate with clearing infection, even in patients treated with IFN (Sarasin-Filipowicz et al., 2008). Indeed, the post-transcriptional blockage of ISG effectors by HCV, for example, via induction of PKR (Buck, 1996). Comparison of The Replication of Positive-Stranded RNA Viruses of Plants and Animals. In: Karl Maramorosch, F.A.M., Aaron, J.S. (Eds.), Adv Virus Replication Volume 47. Academic Press, Cambridge, MA, USA, pp. 159–251. Bushkin, Y., Vaid, S., Sainz, B., Perelson, A.S., Uprichard, S.L., 2009. Modeling subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 83, 841–852.

Chen, L., Li, S., McGilvray, I., 2011. The ISG15/USP18 ubiquitin-like pathway (ISGylation system) in hepatitis C virus infection and resistance to interferon ther.

Apologies for any inconvenience caused.

