




transduce iPSCs. Infection was carried out 5 d later, and protease activity
was assayed 7 dpi.

Huh-7.5 Culture and Infection Transmission Assay. Huh-7.5 cells were propa-
gated in a DMEM with L-glutamine (Cellgro)-based medium containing 100
U/mL penicillin and 100 μg/mL streptomycin (Cellgro) and 10% (vol/vol) FBS
(Gibco). To test if infected iHLCs produced infectious virions, iHLCs were
placed in OSM-containing medium without supplementation with antivirals.
Supernatants collected 1 d later were used to inoculate Huh-7.5 cells. After
overnight incubation, cells were washed and placed in Huh-7.5 medium for
48 h before being washed again. On day 5 postinoculation, supernatants
were assayed for luciferase as described (19). To assess NS5A antigen ex-
pression, Huh-7.5 cells were fixed in methanol, counterstained with Hoechst
(Invitrogen), and immunostained with mouse anti-NS5A (9E10) and goat
anti-mouse Alexa Fluor 594 (Invitrogen).

RT-PCR for Detection of Cytokines and HCV RNA. Total RNA was isolated with
the RNeasy Plus Mini Kit (Qiagen). First-strand cDNA was synthesized using
Moloney murine leukemia virus reverse transcriptase (Bio-Rad). Quantitative
PCR for cytokines was carried out with Taq polymerase and SYBR Green in
the supplier’s reaction buffer containing 1.5 mM MgCl2 (Bio-Rad). Oligonu-
cleotide primer sequences are available by request (25). Amplicons were

analyzed by 2% (wt/vol) agarose gel electrophoresis. Quantitative PCR on
HCV genomes was performed as described (19).

Immuno� uorescence Analysis for Hepatic Gene Expression and Host Factor
Expression. iHLCs were fixed in 4% (wt/vol) paraformaldehyde and/or −20 °C
methanol. After washing and blocking in 0.1% donkey serum/0.1% Triton X-
100 in PBS, cells were incubated in primary antibodies overnight at 4 °C:
mouse anti-human albumin (Sigma-Aldrich), rabbit anti–HNF-3β (Santa Cruz
Biotechnology), mouse anti-human CD81 (Becton Dickinson), rabbit anti-
CLDN1 (Invitrogen), rabbit anti-SCARB1 (Novus Biologicals), and mouse anti-
human OCLN (Invitrogen). Secondary antibodies were donkey anti-mouse
DyLight 594, donkey anti-rabbit DyLight 488, donkey anti-mouse DyLight
488-, and donkey anti-rabbit DyLight 594 conjugates. Cells were counter-
stained with Hoechst dye (Invitrogen).

Western Blot for Entry Receptors. Total protein was extracted with radio-
immunoprecipitation assay lysis buffer, and samples were separated by
electrophoresis on 12% (wt/vol) polyacrylamide gels and electrophoreti-
cally transferred to a PVDF membrane (Bio-Rad Laboratories). Blots were
probedwithmouseanti-humanCD81 (Millipore), rabbit anti-SCARB1 (NB110-
57591; Novus Biologicals), rabbit anti-CLDN1 (51-9000; Invitrogen), and rabbit
anti-OCLN (40-4700; Invitrogen), followed by HRP-conjugated secondary
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Fig. 2. iHLCs express known HCV host factors. (A) (Left) Phase image of iHLCs. (Scale bar: 100 μm.) (Right) Immunofluorescence imaging of iHLCs for al-
bumin (red), HNF-3β (green), and DAPI (blue). (Scale bar: 90 μm.) (B) Liver-specific factors in iHLCs. (Upper) MiRNA-122 expression blot and quantification
(Lower Right) for two typical batches of iHLCs (iHCL-A and iHCL-B). Adult human hepatocytes (heps) (15) are included as a reference. (Lower Left)
Quantification of albumin (Alb) and α-1-antitrypsin (A1AT) secretion by iHLCs. Error bars show SD. (C) (Left) Immunofluorescence imaging of iHLCs for
HCV entry factors SRBI (red) and CD81 (green), with DAPI costaining (blue). (Scale bar: 40 μm.) (Right) Immunofluorescence imaging of iHLCs for HCV entry
factors OCLN (red) and CLDN1 (green), with DAPI costaining (blue). (Scale bar: 40 μm.) (D) Western blot for HCV entry receptors CD81, SRBI, CLDN1, and
OCLN in two typical batches of iHLCs (iHLC-A and iHLC-B) in duplicate samples. (E ) Relative expression of HCV host factors (16) by three batches of iPSCs
(iPAC-A, iPAC-B, and iPAC-C) and iHLCs (14). [Host factors are organized by GO biological process terms, including repeats for genes associated with
multiple terms.]
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antibodies, and were developed by SuperSignal West Pico substrate
(Thermo Scientific).

miR-122 Analysis. Total RNA was isolated with the miRNeasy Mini Kit
(Qiagen). MiRNAs were polyadenylated by poly(A) polymerase, and cDNA

was synthesized usingmiScript PCR kit (Qiagen). Quantitative real-time PCR
on miR-122 then was performed using Homo sapiens (hsa) miR-122–spe-
cific primer (Qiagen) and normalized to RNA, U6B small nuclear (RNU6B)
(Qiagen). Standard curves were performed to obtain absolute levels with
synthetic miR-122 (Dharmacon).

Albumin and α-1-Antitrypsin ELISA. Spent medium was stored at −20 °C. α-1-
Antitrypsin and albumin media concentrations were measured using sand-
wich ELISA technique with HRP detection (Bethyl Laboratories) and 3,3′,5,5′-
tetramethylbenzidine (Thermo Scientific) as a substrate.

Microarray Analysis and Host Factor Expression. Microarray analysis was per-
formed as described (14). Microarray profiles on iHLCs (http://www.ncbi.nlm.
nih.gov/geo/, accession no. GSE14897) were analyzed using gene set en-
richment analysis v. 2.0 with a list of previously identified HCV host factors
(16). Enriched genes were determined by random permutation of gene sets
and a P value < 0.05. Gene ontology (GO) terms and gene associations were
obtained using Gene Set Analysis Toolkit v. 2. Statistical analysis was per-
formed using a hypergeometric distribution to identify terms enriched with
two genes and a P value <0.05 and then connected in a tree hierarchy (26).
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Fig. 3. iPSC-derived iHLCs as a model for hepatitis C. (A) iHLC cultures were infected with HCV reporter virus expressing secreted GLuc (n = 18) or were
mock infected (n = 6) and subsequently were sampled and washed daily. After 7 d (solid gray arrow), infected iHLCs were treated with the NS5B poly-
merase inhibitor 2′CMA (n = 6), NS3/4A protease inhibitor VX-950 (n = 6), or vehicle DMSO (n = 6). Drug treatment was discontinued 12 dpi, and
supernatants collected after an additional day of culture were assayed for the presence of infectious virus by passage onto Huh-7.5 cells. Medium from
Huh-7.5 cells was harvested 5 d after passage for GLuc assay. (Upper) GLuc secretion by iHLCs. The difference between DMSO- vs. 2′CMA-treated cultures
was statistically significant: *P < 0.05, ***P < 0.001 (one-way ANOVA with Tukey’s post test). RLU, relative light units. (Lower Left) GLuc secretion by Huh-
7.5s after passage of iHLC supernatants. DMSO vs. mock was statistically significant: ***P < 0.001 (one-way ANOVA with Tukey’s post test). (Lower Right)
NS5A staining of infected Huh-7.5 cells post passage. (Scale bar: 50 μm.) (B) iHLCs were lysed 14 dpi. Copies of HCV RNA in lysates were quantified by qRT-
PCR. DMSO vs. 2′CMA was statistically significant: ***P < 0.001 (one-way ANOVA after log transformation with Tukey’s post test). (C) NS3/4A activity
imaging of HCV-infected iHLCs (20). White lines surround uninfected cells; red line surrounds an infected cell. (Scale bar, 25 μm.) Data in A–C are means;
error bars show SD.
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Fig. 4. iHLCs demonstrate an inflammatory response to HCV infection. (A)
mRNA expression of innate immune/inflammatory markers in lysates of
infected, DMSO-treated iHLCs relative to mock-infected cells at 2 and 14
dpi. (B) TNF-α secretion by HCV- and mock-infected iHLCs 14 dpi. The dif-
ference was statistically significant: *P < 0.05. Data in A and B are means;
error bars show SD.
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Fig. S1. Induced pluripotent stem cells (iPSCs) do not support hepatitis C virus (HCV) infection. iPSCs and iPSC-derived hepatocyte-like cells were infected
concurrently with HCV reporter virus expressing secreted Gaussia luciferase (HCVcc; n = 6) or were mock infected (mock; n = 6). Cells subsequently were
sampled and washed daily. After 5 d supernatants were collected and assayed for luciferase activity. Mock- and HCV-infected iPSCs showed no statistically
significant difference by two-tailed t test. RLU, relative light units.
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