Porous Silicon Nanoparticle Delivery of Tandem Peptide Anti-Infectives for the Treatment of Pseudomonas aeruginosa Lung Infections

PUBLICATION TYPE:

Journal Article

AUTHORS:

Kwon, Ester J.; Skalak, Matthew; Bertucci, Alessandro; Braun, Gary; Ricci, Francesco; Ruoslahti, Erkki; Sailor, Michael J.; Bhatia, Sangeeta N.

SOURCE:

Advanced Materials, Volume 29, Issue 35, p.1-9 (2017)

URL:

https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201701527

ABSTRACT:

There is an urgent need for new materials to treat bacterial infections. In order to improve antibacterial delivery, an anti-infective nanomaterial is developed that utilizes two strategies for localization: i) a biodegradable nanoparticle carrier to localize therapeutics within the tissue, and ii) a novel tandem peptide cargo to localize payload to bacterial membranes. First, a library of antibacterial peptides is screened that combines a membrane-localizing peptide with a toxic peptide cargo and discovers a tandem peptide that displays synergy between the two domains and is able to kill Pseudomonas aeruginosa at sub-micromolar concentrations. To apply this material to the lung, the tandem peptide is loaded into porous silicon nanoparticles (pSiNPs). Charged peptide payloads are loaded into the pores of the pSiNP at 30% mass loading and 90% loading efficiency using phosphonate surface chemistry. When delivered to the lungs of mice, this anti-infective nanomaterial exhibits improved safety profiles over free peptides. Moreover, treatment of a lung infection of aeruginosa results in a large reduction in bacterial numbers and markedly improves survival compared to untreated mice. Collectively, this study presents the selection of a bifunctional peptide-based anti-infective agent and its delivery via biodegradable nanoparticles for application to an animal model of lung infection.

Manuscript (PDF), Supporting information (PDF)

Previous
Previous

Development of Light-Activated CRISPR Using Guide RNAs with Photocleavable Protectors

Next
Next

Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies