Novel technology could allow researchers to develop and test new antimalaria drugs.

February 22, 2018

LMRT researchers have shown they can grow the dormant parasite in engineered human liver tissue for several weeks, allowing them to closely study how the parasite becomes dormant, what vulnerabilities it may have, and how it springs back to life.

After verifying that they had successfully cultivated the dormant form of the parasite, the researchers showed that they could also sequence its RNA and test its response to known and novel antimalarial drugs -- both important steps toward finding ways to eradicate the disease.

"After 10 years of hard work, we were able to grow the organism, show it had all the functional hallmarks, perform a drug screen against it, and report the first transcriptome of this elusive form. I'm really excited because I believe it will open the door to both the basic biology of dormancy as well as the possibility of better medicines," says Sangeeta Bhatia, the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science. Bhatia is also a member of MIT's Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science, and the senior author of the study.

MIT graduate student Nil Gural is the first author of the paper, which appears as the cover feature in the Feb. 22 issue of the journal Cell Host and Microbe. You can see the cover feature here and associated caption here. This publicaton was also highlighted by Cell Host and Microbe as "Best of 2018."

Press coverage related to this research:

For access to the research publication, click here.