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ABSTRACT Dielectrophoretic (DEP) forces have been used extensively to manipulate, separate, and localize biological cells
and bioparticles via high-gradient electric fields. However, minimization of DEP exposure time is desirable, because of possible
untoward effects on cell behavior. Toward this goal, this article investigates the geometric and material determinants of particle
patterning kinetics and efficiency. In particular, the time required to achieve a steady-state pattern is theoretically modeled and
experimentally validated for a planar, interdigitated bar electrode array energized in a standing-wave configuration. This
measure of patterning efficiency is calculated from an improved Fourier series solution of DEP force, in which realistic boundary
conditions and a finite chamber height are imposed to reflect typical microfluidic applications. The chamber height, electrode
spacing, and fluid viscosity and conductivity are parameters that profoundly affect patterning efficiency, and optimization can
reduce electric field exposure by orders of magnitude. Modeling strategies are generalizable to arbitrary electrode design as
well as to conditions where DEP force may not act alone to cause particle motion. This improved understanding of DEP
patterning kinetics provides a framework for new advances in the development of DEP-based biological devices and assays
with minimal perturbation of cell behavior.

INTRODUCTION

The physical manipulation of biological particles (from

DNA to viruses to cells) is a vital component of miniaturized

biotechnological platforms such as ‘‘lab-on-a-chip’’ devices

and arrays for high-throughput assays (Huang et al., 2001;

Kapur et al., 1999; Ozkan et al., 2003; Voldman et al., 2002).

To date, cellular arrays have primarily been generated via

selective surface modification or micropatterning techniques

(Bhatia and Chen, 1999; Folch and Toner, 2000). However,

these passive techniques rely on cell adhesion processes that

occur over relatively long timescales (hours), are limited to

planar surfaces, and cannot be generalized to nonadherent

cell types. In the future, ‘‘active’’ patterning techniques that

are independent of cell adhesion would be advantageous to

decrease patterning time and extend capabilities to the manip-

ulation of nonadherent cell types or cells that alter their behavior

when spread against a rigid surface.

Active patterning can arise through the application of

a variety of physical forces, including mechanical, fluidic,

optical, acoustic, and electromagnetic (Ashkin, 1997;

Iwasaka et al., 2001; Jager et al., 2000; Matsue et al., 1997;

Ozkan et al., 2003; Wu, 1991). One particularly advanta-

geous strategy utilizes dielectrophoresis (DEP), the trans-

lational motion of polarizable matter (neutral or charged)

within a spatially nonuniform electric field (Hughes, 2003;

Jones, 1995; Pohl, 1978). The DEP force moves particles

toward regions of high field intensity (positive DEP or

1DEP) or low field intensity (negative DEP or �DEP),

depending on electrical properties of the particle and

suspending medium. By varying electrode shape and

excitation, DEP forces have been used for particle trapping,

arraying, levitation, translation, fractionation, filtration,

orientation, and characterization based on dielectric proper-

ties (Arnold and Zimmermann, 1988; Frenea et al., 2003;

Gascoyne and Vykoukal, 2002; Matsue et al., 1997; Vold-

man et al., 2001). However, the general use of DEP forces for

patterning cells to fixed locations has not been extensively

pursued since its initial proposal (Matsue et al., 1997), in part

because DEP forces are inherently transient and disappear

when the field is removed. Because living cells appear to

tolerate high electric fields for relatively short times (Archer

et al., 1999; Docoslis et al., 1999; Glasser and Fuhr, 1998),

long-term biological experimentation requires a method to

stabilize cell position in the absence of DEP forces. Recent

strategies for restraining cell migration after active DEP

localization include the incorporation of cell-adhesive

proteins (Gray et al., 2003) or etched microwells (Frenea

et al., 2003). Alternatively, encapsulation of patterned cells

within hydrogel biomaterials (Elisseeff et al., 2000) would

further enable incorporation of cells that are nonadherent or

require three-dimensional (3-D) microenvironments to main-

tain tissue-specific functions (Abbott, 2003; Benya and

Shaffer, 1982; Cukierman et al., 2002; Schmeichel and

Bissell, 2003). To achieve this goal of positioning cells by

DEP and immobilization via hydrogel entrapment, it is

desirable to identify experimental parameters that: 1),

maximize DEP patterning efficiency, 2), support cell viability

without perturbing cell function, and 3), preserve the
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chemistry of hydrogel formation. These requirements suggest

that a model-guided, rather than empirical, determination of

experimental parameters is advantageous.

Existing analytical and numerical models of DEP force

illustrate spatial variations within a device but historically

have been limited to specific geometries or approximate

boundary conditions (Chang et al., 2003; Clague and

Wheeler, 2001; Green et al., 2002; Heida et al., 2001; Masuda

et al., 1987; Morgan et al., 2001; Schnelle et al., 1993; Wang

et al., 1993, 1996). Practical applications of these models

include predicting levitation height, particle velocity, and

selected particle trajectories (Markarian et al., 2003; Morgan

et al., 2001; Qiu et al., 2002), although none have integrated

these models into a single parameter that describes the overall

time for DEP motion or ‘‘patterning’’ to occur.

The purpose of the work, described herein, was to develop

and validate a predictive model of DEP patterning efficiency.

Toward this goal, an expression was derived for the time at

which model particles localize to a parallel line pattern within

a thin, rectangular fluid volume. The patterning chamber was

bounded by a planar interdigitated bar electrode array that is

common to many DEP devices. Patterning kinetics were

based on a new analytical solution for electric potential that

allowed continuous variation of electrode and chamber

geometry. In contrast to previous models, this solution

specified a finite, variable chamber height and an improved

set of boundary conditions, guided by numerical model data,

which resulted in superior accuracy. The variation in particle

kinetics was compared for changes in chamber geometry

(electrode spacing and width, chamber height), material

parameters (particularly viscosity and medium conductivity),

patterning configuration (1DEP and �DEP), and particle

buoyancy. The model closely predicted experimental kinetics

of model particles, even for the unexpectedly slow patterning

at very small chamber height. Therefore, the model serves as

a useful tool for optimization of materials, geometries, and

field conditions for efficient patterning, particularly for the

patterning of living cells where viability is crucial.

DIELECTROPHORETIC FORCE MODEL

The parallel, planar, interdigitated electrode array is depicted

in Fig. 1 A. When a potential is applied across alternating

electrodes, this array establishes a nonuniform electric field

dependent on dimensional and material properties. Particles

suspended in a fluid experience a spatially varying DEP

force that governs particle kinetics. Therefore, we begin with

a model of DEP force for any chamber geometry to

investigate the geometric determinants of patterning kinetics.

Model theory

Electrokinetic forces are generated by an applied electric

field. To determine the electric field characteristics, the

electric potential is solved within the model space, using

appropriate boundary conditions that represent the electrode

array geometry.

The quasielectrostatic form of Maxwell’s equations is

appropriate for the low currents and high frequencies typical

to DEP. For a homogeneous linear dielectric with conduc-

tivity s and permittivity e, the electric potential f at

a sinusoidal steady state is determined by:

= � ½s1 jve�=f̃ ¼ 0; (1)

where v is oscillation frequency, j ¼ ð�1Þ1=2
and the

tilde (;) indicates a complex variable (phasor). For

FIGURE 1 (A) Schematic of the DEP patterning chamber with interdigitating bar electrodes (shaded) at bottom surface. Top and bottom surfaces (shaded)

are nonconducting glass. Geometric variables include chamber height (h), electrode spacing (d), and electrode width (w). (B) The 2-D problem space for the

numerical model, depicting volume dimensions and boundary conditions in the x-z plane. The rectangular liquid chamber containing water (ew ¼ 80 e0; sw ¼
10�4 S/m) is bounded at the top and bottom by glass (egl ¼ 4.5 e0; sgl ¼ 10�12 S/m; hgl ¼ 1 mm). Potential is specified at the electrode surfaces (solid bars)

only. (C) The simplified problem space used for the analytical solution. The boundary condition at the bottom plane is of Neumann type, where function f(x#) is

determined from the FEM model (see text). (D) Neumann BC at z# ¼ 0. Normalized values from 13 FEM models spanning the geometry range of interest

(points) are fit to a third-order polynomial f(x#) for analytical solution BC (shaded line). Electrode (solid bar) edge is at x# / w# ¼ 0.5.
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a homogeneous medium, this reduces further to Laplace’s

equation for the real portion of the electric potential,

=
2
f ¼ 0: (2)

The time-averaged dipole approximation to the DEP force

is given by (Jones, 1995):

ÆFDEPðtÞæ ¼ 2pem R
3
Re½ ~ffCMðvÞ�=E

2

rms; (3)

where Erms is the root-mean-square electric field vector, em is

the medium permittivity, R is the particle radius, and ~ffCM is

the Clausius-Mossotti (CM) factor,

~ffCMðvÞ ¼
~eep � ~eem

~eep 1 2~eem

; (4)

dependent on complex permittivities ~ee ¼ e� js=v of the

particle (p) and medium (m). Equation 3 is valid except

where the spatial field nonuniformity is very large, such as at

the electrode edges, and higher-order terms are necessary

(Voldman et al., 2001).

Dimensionless equations

The electric field depends on the applied electrode voltage

(Vrms), electrode width (w) and spacing (d), and chamber

height (h). To reduce the number of model variables,

dimensionless variables, denoted by prime (#), are defined

as: potential f# ¼ f=Vrms; displacement vector x# ¼ x=d;
electrode width w# ¼ w=d; chamber height h# ¼ h=d;
gradient operator =# ¼ d=; and electric field E# ¼
Erms d=Vrms: The time-averaged DEP force becomes:

ÆFDEPæ ¼ 2pem R
3
Re½ ~ffCMðvÞ�

V
2

rms

d
3

� �
=#jE#j2; (5)

where the term in braces represents a characteristic force

constant, =. Dimensionless DEP force,

ÆF#DEPæ ¼ ÆFDEPæ== ¼ =#jE#j2 ¼ =#ðj=#f#w#;h#j2Þ; (6)

is obtained by solving Eq. 1 or 2 for potential f#w#;h#ðx#Þ
throughout the solution space. As indicated by the subscript

notation, this solution needs to be computed only once for

a particular nondimensional electrode width w# and chamber

height h#. DEP force is then scaled by the characteristic force

constant, according to the applied voltage, electrode spacing,

particle radius, and frequency-dependent dielectric properties.

Analytical solution for electric potential

DEP forces throughout the solution space can be predicted

readily from the electric potential. Analytical solutions are

advantageous because: 1), geometric parameters can be varied

continuously and independently to provide physical insight;

2), analytical expressions can be obtained directly for electric

field and DEP force; such that 3), errors are not introduced by

discretizing the volume and numerically estimating gradients;

4), accurate field and force determinations can be made at

volume boundaries; and 5), the approach is computationally

more efficient than numerical techniques.

Even for a simple geometry such as the interdigitated

planar electrode array, no exact analytical expression exists

for the electric potential. A boundary condition (BC) of

mixed type (Dirichlet and Neumann) best represents the

electrode substrate-fluid interface plane at z# ¼ 0, hereafter

designated as the ‘‘electrode substrate.’’ However, mixed

boundary value problems are difficult to solve analytically

and solution methods are limited and complex, involving

Green’s functions or integral transforms (Sneddon, 1966). In

contrast, analytical solutions with a single type of BC across

each distinct boundary are significantly simpler to obtain. For

example, linear approximations to the electric potential at

the electrode substrate between interdigitated electrodes were

assumed in previous Fourier series (Masuda et al., 1987;

Morgan et al., 2001) and Green’s function (Clague and

Wheeler, 2001; Wang et al., 1996) solutions. These approx-

imate models, which we term ‘‘linear BC’’ solutions, have

limited accuracy (Green et al., 2002), prompting the de-

velopment of complex analytical solutions with improved

BCs (Chang et al., 2003; Wang et al., 1996). However,

improved solutions to date do not include the effects of a finite

top boundary, and are therefore unsuitable for this geometric

analysis.

Numerical methods, in contrast, are able to specify the

correct mixed BC without difficulty. In this manner, electric

field solutions were obtained for several electrode geome-

tries, using point charge, charge density, finite difference,

integral equation, and finite element methods (Green et al.,

2002; Heida et al., 2001; Schnelle et al., 1993; Wang et al.,

1993). However, each geometry requires a separate compu-

tation, and general design principles are difficult to extract.

In this article, we employ a hybrid numerical/analytical

solution method to obtain Fourier series expressions of both

electric potential and DEP force, in which geometric and

material properties can be continuously varied. A significant

advantage of these solutions is that they do not assume an

unbounded half-space and are therefore appropriate for finite

upper boundaries. Further, accuracy is greatly improved over

linear approximations with only a moderate increase in

model complexity. Although this hybrid approach remains

an approximation, we demonstrate its suitability in this work

and suggest that its simplicity may find further application in

other areas.

Modeling approach

The model utilizes a combination of numerical and analytical

methods. First, numerical solutions that allow the correct
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mixed BC definition at the electrode substrate were obtained

for a range of chamber geometries. Then, a geometry-in-

dependent curve fit to either the electric potential or the

electric field provides a single BC type at the entire boundary

plane, such that a simple analytical expression of the electric

potential can be derived. We found that the latter option,

specifying the electric field normal to the wall (a Neumann

condition) provides better accuracy, especially for narrow

electrodes.

Boundary conditions

Because the electrodes are typically long relative to their

width, the problem can be considered two-dimensional (Fig.

1 B). At volume boundaries and symmetry planes, the

Neumann condition @f#=@n ¼ 0 reflects the absence of

current conduction across these planes, as described in detail

elsewhere (Green et al., 2002). This approximate BC is valid

at all frequencies for the potential in the fluid (water; ew ¼
80e0; sw ¼ 10�4 S/m) bounded by an insulating wall with

reduced conductivity and permittivity (glass; egl ¼ 4.5e0;

sgl ¼ 10�12 S/m). The electrodes are considered infinitely

thin, with a constant potential equal to the applied voltage

(f# ¼ �1 or 11 at z# ¼ 0).

For the numerical model, upper and lower glass walls were

included (Fig. 1 B). However, because the conductivity of

glass is negligible, the solution space for the analytical model

is simplified to contain only the liquid volume (Fig. 1 C). By

the same argument as above, current conduction normal to

the surface is zero at the liquid-glass boundaries, i.e.,

@f#=@n ¼ 0. The numerical model, described below, deter-

mines the unknown Neumann BC at the electrode surface.

Numerical finite element model

The commercially available CFD-ACE1 finite element

software suite (CFDRC, Huntsville, AL) was used to solve

Eq. 1 for the sinusoidal steady-state electric potential. This

package utilized a finite volume method technique and

a structured mesh with nodes concentrated near the electrode

edges.

Fifteen separate solutions of potential and electric field at

the electrode wall (z# ¼ 0) were obtained for various cham-

ber geometries: h#¼ 0.33 � 1.0, and w# ¼ 0.1 � 0.5. Larger

heights were not included because of negligible effects on

electrode wall BCs above h# . 1. Numerical values for

electric field normal to the electrode plane for all geometries

converge to a single curve upon normalization in the x- and

z-directions (Fig. 1 D). A third-order polynomial fit,

f ðx#Þ ¼ 11 16ðx#=w#Þ3
0# x##w#=2

0 w#=2, x## 0:5
;

�
(7)

approximates the Neumann BC across the entire lower

boundary for any electrode width and chamber height.

Improved analytical solution

The Fourier series solution for electric potential (Eq. 2) is

defined by coefficients:

An ¼
�4

np

Z 1=2

0

f ðx#Þcosðnpx#Þdx#; (8)

where f ðx#Þ ¼ @f#w#;h#=@z# at z# ¼ 0. For these integral

coefficients to have an analytical solution, f ðx#Þ is limited to

linear combinations of polynomial, exponential, and sinu-

soidal functions. These functions may be discontinuous.

Power, logarithmic, and inverse functions, for example,

would not lead to analytical Fourier coefficients.

Using Eq. 7, Fourier coefficients depend on electrode

width, w#:

An;w# ¼
�4

np

3

w#3
n

4
p

4 ð4w#2n2
p

2 � 32Þcos
w#np

2

� ��

1w#npðw#2
n

2
p

2 � 16Þsin
w#np

2

� �
1 32

�
: (9)

The electric potential is then described by an infinite

series:

f#w#;h#ðx#; z#Þ¼ +
N

m¼0

k
�1

w#;h# A2m11;w#
cosh½ð2m1 1Þpðz#� h#Þ�

sinh½�ð2m1 1Þph#�
3cos½ð2m1 1Þpx#�: (10)

Here, kw#;h# is a scaling function such that potential

f#w#;h#ðx# ¼ 0; z# ¼ 0Þ¼ 1 at the electrode center:

kw#;h# ¼ +
N

m¼0

A2m11;w# coth½�ð2m1 1Þph#�: (11)

In this article, the first 250 terms were computed for each

series.

Solving Eq. 10, Fig. 2 A illustrates the potential and

electric field boundary conditions at the electrode substrate

(z# ¼ 0), for h# ¼ 2/3, w# ¼ 0.2. The ‘‘improved BC’’

analytical solution closely matches the numerical model at

the boundary, in contrast to the linear BC solution described

elsewhere (Morgan et al., 2001).

For modeling DEP patterning kinetics, the accuracy of the

electric field solution throughout the chamber volume is

important. Analytical solutions of electric field magnitude,

jE#j, are compared to numerical finite element model (FEM)

solutions in Fig. 2 B. Regardless of geometry, the improved

BC solution shows ,3% error in electric field magnitude for

the majority of the solution space, whereas the linear BC

solution deviates by .10% throughout most of the volume.

The localized inaccuracies in the improved BC solution, at

the electrode edges and directly opposite them, were

considered acceptable because particle patterning occurs

2134 Albrecht et al.

Biophysical Journal 87(4) 2131–2147



mostly away from these regions; thus, predicted patterning

time would not be appreciably affected. In contrast,

inaccuracies in the linear BC solution occur throughout the

solution space, even far from the electrode array, and

significantly influence model results (see ‘‘Model valida-

tion’’).

By employing advantages of both numerical and analyt-

ical methods, the improved solution method allows quick

computation of the electric potential, f#w#;h#ðx#Þ, with

greater accuracy than previous analytical solutions. All

variables are continuous, including particle position (x#) and

chamber geometries (w# and h#), an important advantage

over discrete numerical solutions.

DEP force calculation

Nondimensional DEP force (Eq. 6) is conveniently recast in

indicial notation:

ÆF#DEPæiðx#iÞ ¼ +
j

2
@f#

@x#j

@

@x#i

@f#

@x#j

� �
; (12)

where i,j represent vector indices. Because electric potential

is given by an analytical expression (Eq. 10), gradients of

potential are also analytical expressions that are readily

computed using symbolic mathematics software, such as

Mathematica (Wolfram Research, Champaign, IL). As a

result, only a single series calculation is necessary for deter-

mining the DEP force vector at a particular position within

the solution space.

PATTERNING EFFICIENCY MODEL

The velocity and position of a model particle can be tracked

during simulated patterning using the continuous analytical

solution of DEP force exerted upon it. The time required for

the slowest particle to pattern is a measure of DEP patterning

efficiency.

Theory and model

Force balance

Particle motion arises from a balance of applied DEP force,

viscous drag, gravity, inertia, surface friction/adhesion, and

interparticle attraction, and is further influenced by convec-

tion of the suspending fluid due to pressure, electrothermal,

or electroosmotic flow. In this analysis, we assume neg-

ligible inertia due to low Reynolds number flow (typically,

Re , 10�5 in microfluidics), no convection, and no surface

forces. Thus, a balance between DEP force (Eq. 5) and drag

force defines kinetics of neutrally buoyant particles:

FDEPðx#Þ 1 Fdrag

dx#
dt

� �
¼ 0; (13)

Fdrag ¼ �6KmR d
dx#
dt

; (14)

where m is fluid viscosity and K(x#) is a scaling factor equal

to unity for motion of a rigid particle far from a wall (Stokes

drag) but increases near a wall to reflect increased drag force

(Goldman et al., 1967; Keh and Chen, 2001; Oseen, 1927).

The particle velocity field,

FIGURE 2 Comparison of analytical solutions using the improved

boundary condition (left, ‘‘Improved BC’’) or a linear approximation

between electrodes (right, ‘‘Linear BC’’) and the numerical solution for

w# ¼ 0.2. (A) Electric potential and field components at the electrode

boundary, z# ¼ 0, demonstrate a closer match between the numerical model

and the improved BC analytical model compared to the linear BC model. (B)

Comparison between electric field magnitude from numerical solution

jE#numj and analytical solutions jE#j, where contour shading indicates relative

error: jðE#j � jE#numjÞ=jE#numjj: The improved BC solution (left) deviates

from the numerical solution by ,3% for a majority of the solution space

(dark red/orange), whereas the linear solution (right) deviates by .10%

throughout most of the volume (white). Similar accuracy is achieved with

models of different geometry.
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dx#
dt

¼ em V
2

rmsReð ~ffCMÞ
12K m

R
2

d
4 ÆF#DEPæw#;h#ðx#Þ; (15)

is nondimensionalized by defining a time constant for DEP,

tDEP ¼ 12m

em V
2

rmsReð ~ffCMÞ
d

4

R
2; (16)

and a dimensionless time, t# ¼ t=tDEP; such that:

dx#
dt#

¼ K
�1ÆF#DEPæw#;h#ðx#Þ: (17)

The position of any particle at any time, x#; can be

determined by solving this system of coupled differential

equations with the initial condition x#ðt# ¼ 0Þ ¼ x#0: Here,

the initial position vector identifies which particle is tracked.

A particle reaches its equilibrium patterned location, x#pat; at

a dimensionless time, t#pat; that is dependent on its initial (and

final) positions.

Patterning kinetics

Patterning kinetics for selected neutrally buoyant particles

are demonstrated in Fig. 3. For comparison, the electrode

plane is oriented on the bottom for the 1DEP case and on top

for the �DEP case, such that particles pattern downward to

the lower plane in both illustrations. Path lines that track

particle centroid over time curve away from the pattern

location in the upper portion of the chamber and converge in

the lower regions, for both 1DEP and �DEP. Also, particle

velocity is greatest near the electrodes, as indicated by

increased separation between symbol points representing

regular time intervals. To understand the evolution of pattern

formation over time, consider the contours of dimensionless

patterning time, t#pat; in Fig. 3. At a particular time, t#; all

particles initially within the area where t#$ t#patðx#0; x#patÞ
will have translated from their initial locations ðx#0Þ to the

final pattern ðx#patÞ. As t# increases, this depleted space will

increase until it encompasses the entire chamber area. By

�DEP, the center column below the electrode patterns first,

and expands over time at a nearly uniform rate. By 1DEP,

however, particles in a semicircular area surrounding the

electrodes pattern initially, and this area grows at an ex-

ponentially decreasing rate. These distinct patterning kinetics

occur because particles accelerate toward the field maxima

by1DEP, whereas they slowly converge to the field minima by

�DEP. Patterning time is shorter by 1DEP than by �DEP

for any initial particle position.

Patterning efficiency

The patterning time of the slowest-moving particle repre-

sents the total time for all particles to pattern. From Fig. 3,

the initial position resulting in the longest t#pat occurs in the

upper left corner, i.e., the center of the electrode gap at the

upper wall. However, because horizontal force vanishes at

this symmetry plane (x# ¼ 0.5) as well as at the final pattern

location, a small distance away from these points must be

chosen to obtain a finite solution for patterning time. In this

article, we arbitrarily select d# ¼ 0.01 or 1% of electrode

spacing. The total patterning time for a given geometry is

defined as:

T#ðw#; h#Þ ¼ t#patðx#0; x#patÞ; (18)

where initial and final positions are x#0 ¼ ð0:5 � d#;R#Þ or

ð0:5 � d#; h#� R#Þ and x#pat ¼ ðd#; h#� R#Þ or ðw#=2;R#Þ
for �DEP or 1DEP, respectively, and R# ¼ R=d is the

dimensionless particle radius.

The predicted time to achieve complete patterning for any

chamber geometry is:

FIGURE 3 Patterning motion and kinetics by (A) �DEP and (B) 1DEP.

(Right) The DEP patterning motion varies with initial particle location (x#0;
gray open circles), as indicated by centroid pathlines. Symbol points are

equally spaced in time, indicating higher particle velocity near the electrode

(solid bar). Near the pattern location (x#pat; black open circles), motion is

slow by �DEP but rapid by 1DEP. (Left) Contours of dimensionless

patterning time ðt#patÞ for various initial particle locations. This value is

lowest near the pattern location and greatest at the opposite wall in between

electrodes.
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tpatðd; w; hÞ ¼ tDEPT#ðw#; h#Þ

¼ 12m

em V
2

rmsReð ~ffCMÞ
d

4

R
2 T#ðw#; h#Þ: (19)

Effects of geometry on patterning efficiency

Model results are presented below in two forms, based on

nondimensionalization of geometric parameters to electrode

spacing, d, or chamber height, h. The former case is conve-

nient for choosing an optimal height given a uniform electrode

pattern, whereas the latter formulation is ideal for varying

pattern dimensions or when a particular height is required.

Constant electrode spacing

In many applications of DEP patterning, control over the

dimensions and geometry of the resulting particle pattern is

desired. For example, a parallel line pattern is specified by

interdigitated electrode spacing, and variations in electrode

width and chamber height could be made to accelerate

patterning time.

To determine the effects of chamber geometry, the

complete nondimensional patterning time, T#ðh#;w#Þ, is

computed for varying dimensionless chamber height and

electrode width. For all geometries, patterning by 1DEP

(Fig. 4, B and D) is more rapid than by �DEP (Fig. 4, A and

C). Increasing electrode width decreases patterning time for

both 1DEP and �DEP for all chamber heights, although this

effect is more pronounced for thinner chambers.

Interestingly, the effect of chamber height on patterning

time is not monotonic. At large heights, h# . 1, patterning

time increases exponentially with a slope of 2p, i.e.,

t#} expð2ph#Þ. This is consistent with the exponential

decrease in electric field strength with distance from the

electrode array by E#z } expð�2pz#Þ for z#. 1 (Green et al.,

2002; Morgan et al., 2001). However, very small chamber

heights also result in long patterning times, due to initially

slow kinetics of distant particles (Fig. 4 E, curve a). Under

FIGURE 4 Effects of geometry on

patterning efficiency by �DEP (A, C)

and 1DEP (B, D) for constant electrode

spacing. Dimensionless complete pat-

terning time, T#, varies with chamber

height h# and electrode width w#.
Model calculations are presented as

contour plots (log contours at 1, 2, 5

gradations) above (A, B) and as families

of curves below (C, D) for particular

electrode widths. To explain the cham-

ber height effect, patterning kinetics (E)

and electric field lines (F) are shown for

three different chamber heights (a ,

b , c), where b represents the optimal

height with fastest patterning for w# ¼
0.4. Particle motion is tracked from

x#¼ 0.5 to the field minimum at x#¼ 0.

As chamber height increases beyond

optimal (e.g., c), decreased electric field

strength increases patterning time.

However, at suboptimal chamber

heights (a), patterning time increases

dramatically due to confinement of the

electric field nonuniformity near the

electrode. Therefore, patterning is very

slow in regions away from the electro-

des (*), although it is very fast near the

electrodes (**).
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these conditions, electric field lines become more parallel in

the electrode gap regions, where both the spatial field

nonuniformity and DEP force are reduced (Fig. 4 F).

Therefore, a band of particles in the center of the gap region

will move very slowly, or not pattern at all. In contrast, field

lines near the electrodes are extremely divergent, and particle

motion is very rapid. However, the definition of patterning

time T# reflects complete patterning, including those

particles initially in the gap region, and therefore this value

increases greatly for very small chamber heights.

Constant chamber height

Many applications of DEP patterning require a specific

chamber height, but allow variable electrode geometry as

design parameters. Some examples include microfluidic

devices that often contain uniform channel geometry, and the

patterning of cells within a gel material whose thickness is

defined by the chamber height (Albrecht et al., 2002). Other

applications, such as particle depletion from the bulk of

a microfluidic channel, would be less concerned with

specific pattern dimensions than with chamber height.

Finally, optimizing arbitrary particle patterns would require

model efficiency information for a variety of relative heights

(h#) and widths (w#).
The complete patterning time can be nondimension-

alized in terms of chamber height h rather than electrode

spacing d:

T#hðw�
; d

�Þ ¼ ðd�Þ4
T#ðw#; h#Þ; (20)

where dimensionless geometric variables are recast as

electrode width, w* ¼ w/h ¼ w#/h# and electrode spacing,

d* ¼ d / h ¼ h#�1. Then,

tpatðd; w; hÞ ¼
12m

em V
2

rmsReð ~ffCMÞ
h4

R
2T#hðd�;w�Þ: (21)

Fig. 5 illustrates the improved analytical model solution

for the nondimensional patterning time of a neutrally

buoyant particle, for varying nondimensional electrode

spacing (d*) and electrode width (w*). Patterning kinetics

show similar trends with constant chamber height as with

constant electrode spacing. Positive DEP patterning (Fig. 5,

B and D) is more rapid than negative DEP (Fig. 5, A and C)

for all geometries, and wider electrodes accelerate patterning

for all chamber heights and for both 1DEP and �DEP.

Patterning time is also highly dependent on electrode

spacing, increasing above and below optimal values. This

variation is due to the balance between: 1), the direct

dependence of T#h on electrode spacing by (d*)4 (Eq. 20),

and 2), the effects of concomitant inverse changes in relative

chamber height, h#¼ (d*)�1. The former effect dominates at

electrode spacing d* . ;1. However, as spacing is reduced

below d* , 1, thereby increasing h# . 1, the latter effect

dominates as patterning time increases exponentially with

FIGURE 5 Effects of geometry on

patterning efficiency by �DEP (A, C)

and 1DEP (B, D) for constant chamber

height. The complete patterning time,

nondimensionalized to chamber height,

T#h, varies with electrode spacing d* ¼
d/h and electrode width w* ¼ w/h.

Model calculations are presented as

contour plots (log contours at 1, 2, 5

gradations) above (A, B) and as families

of curves below (C, D) for particular

electrode widths.
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relative chamber height (Fig. 4). Optimal electrode spacing,

which varies with electrode width, occurs when these

dependencies are balanced.

Chamber optimization using model

Patterning can be optimized by selecting the chamber height

or electrode spacing that minimizes patterning time for

a given electrode width. The optimal geometry increases

patterning efficiency by maximizing electric field gradients

across the chamber relative to the applied field strength. For

a constant electrode spacing, optimal chamber height

decreases with electrode width from h#opt ; 0:36 � 0:15 by

�DEP, and from h#opt ; 0:47 � 0:25 by 1DEP (Fig. 6 A).

When specifying a constant chamber height, patterning is

most rapid with an electrode spacing of about d�opt ; 1.25–

1.33 (h#opt ; 0.75–0.8) by �DEP, and is relatively

insensitive to electrode width (Fig. 6 B). By 1DEP, optimal

electrode spacing increases with electrode width, from d�opt ;

1.08–1.5 (h#opt ; 0.92–0.67). To illustrate the sensitivity of

optimization, shaded regions indicate the height (or spacing)

range where patterning time is within 10% of optimal. By

this definition, selecting a dimensionless chamber height or

electrode spacing within 0.1–0.2 of the optimal value results

in efficient patterning. In all cases, larger electrode widths

decrease patterning time, even when considering the optimal

geometry for a particular width (top panels). Therefore, the

overall optimal geometry would include the widest electro-

des and a chamber height or electrode spacing as indicated in

Fig. 6, A or B. However, electrode width also affects pattern

location for 1DEP, but not �DEP (Fig. 3).

The DEP patterning model is also useful in cases where

numerous electrode or chamber geometries exist within

a single device. Consider a single chamber of uniform height

containing distinct interdigitated electrode arrays with

different spacing and width. Patterning time within each

array region is expected to vary according to Figs. 5 and 6 B.

However, an overall optimal chamber height can be selected

for the entire device by plotting dimensional patterning time,

tpat (d, w, h), for each geometry. For example, DEP

aggregation of negatively buoyant (settling) particles within

microfluidic channels was recently analyzed using interdig-

itated arrays with electrodes either d ¼ 4-, 10-, or 20-mm

apart, w# ¼ 0.5, and a uniform chamber height h ¼ 30 mm

(Markarian et al., 2003). In Fig. 6 C, we present as an

example model results for 1DEP patterning time within this

geometry, for the simplified case of neutrally buoyant

particles see ‘‘Gravitational effects’’ for the general case).

Clearly, a 30-mm chamber height is not optimal for any of

the three electrode geometries; in fact, patterning would not

be expected to occur at all for the smallest spacing due to the

large ratio of chamber height to electrode spacing. Reducing

the chamber height to ;7 mm should not only enable

simultaneous patterning at all three electrode geometries, but

FIGURE 6 Optimal chamber geom-

etry parameters for �DEP (s) and

1DEP (d) determined by minimizing

the complete patterning time T# or T#h.

(A) For a constant electrode spacing (d),

the optimal chamber height (h# ¼ h/d)

decreases as electrode width (w#¼ w/d)

increases. (B) Similarly, for a constant

chamber height (h), the optimal elec-

trode spacing (d* ¼ d/h) varies with

electrode width (w* ¼ w/h). Shaded or

hatched regions indicate parameters

resulting in efficiency within 10% of

optimal. Overall, patterning time de-

creases with wider electrodes (top

panels). (C) An example of chamber

height optimization for 1DEP pattern-

ing of neutrally buoyant particles

within a device containing three distinct

electrode geometries: d ¼ 4, 10, and 20

mm, w#¼ 0.5. Most rapid patterning for

all three geometries occurs at chamber

height h ; 7 mm (*).

DEP Patterning Kinetics and Efficiency 2139

Biophysical Journal 87(4) 2131–2147



also result in a 200-fold acceleration compared to the 30-mm

height.

A final consideration regarding the chamber height is the

limitation imposed by the particle size, requiring for all cases

h/2R . 1. Near this limiting case, an increase in drag force

due to wall effects may occur, thus increasing the factor K in

Eq. 14 and also the predicted patterning time. Remarkably,

this effect is minimal for nearly all chamber geometries. For

example, drag force on rigid spheres translating along a wall

is increased ,10% for a chamber height twice that of the

particle diameters (h/2R¼ 2) and ;80% for the limiting case

(h/2R / 1) (Keh and Chen, 2001). Thus, the model

conclusions presented in this article are valid even for

extremely thin chambers.

Gravitational effects

For particles that are not neutrally buoyant, gravitational

force is included in the force balance:

FDEPðx#Þ1Fdrag

dx#
dt

� �
1Fgrav ¼ 0

Fgrav ¼
4

3
pR

3
Drgĝ; (22)

where Dr is the difference in density between the particle

and the fluid, and g is the gravitational acceleration in the

direction of unit vector ĝ. Then,

dx#
dt

¼ em V
2

rmsReð ~ffCMÞ
12K m

R
2

d
4 ÆF#DEPæw#;h#ðx#Þ1

2Drg

9K m

R
2

d
ĝ

dx#
dt#

¼ K
�1½ÆF#DEPæw#;h#ðx#Þ1Gĝ�; (23)

where the nondimensional gravitational term,

G ¼ 8Drg d
3

3em V
2

rmsReð ~ffCMÞ
; (24)

describes the relative influence of gravitational force to DEP

force. Typical values of G are of the order 0.01–1 for

polymer beads and cells, patterned d¼ 100 mm apart at 1–10

Vrms. Therefore, DEP force is stronger than gravitational

force for most conditions (hence the ability to levitate these

particles). In contrast, metal particles may have G; 10–1000

under the same conditions.

To illustrate the influence of gravitational forces, dimen-

sionless patterning time was computed for varying G and

chamber height in Fig. 7. Here, the chambers were oriented

such that gravity would accelerate patterning. Thus, for

particles denser than the fluid, the electrode array was ori-

ented above for �DEP and below for 1DEP patterning (as

in Fig. 3, gravity acting downward). The greatest potential

influence of gravity is illustrated by comparing neutral-

bouyancy (G ¼ 0) results with the asymptotic case, G/N,

representing maximum gravitation where all particles in-

stantly settle to the bottom wall. This case also characterizes

the situation where particles are allowed to settle completely

in the absence of an electric field before patterning.

Fig. 7 demonstrates a consistent, height-dependent de-

crease in patterning time with increasing G, although marked

differences between 1DEP and �DEP patterning are

evident. Importantly, the optimal geometry (Fig. 6) does

not change appreciably when gravitational effects are

considered. For �DEP, gravitational settling offers at most

a two- to threefold patterning acceleration (Fig. 7 A). At

larger heights (h# . 1), the increase in patterning time with

chamber height remains exponential with a constant slope of

2p, for all G. In contrast, gravitational effects are

significantly greater for 1DEP (Fig. 7 B). Patterning time

increases with chamber height (for h# . 1) with an

exponential slope that decreases with gravitational force

FIGURE 7 Effects of gravity on

patterning efficiency by �DEP (A)

and 1DEP (B). Nondimensional com-

plete patterning time is calculated for

varying gravitational factor, G (defined

in text), and chamber height. Electrode

width is w# ¼ 0.2. Above, the relative

patterning time compared to neutral

buoyancy (G ¼ 0) indicates that the

potential for gravity to assist particle

patterning is greater for 1DEP than for

�DEP.
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from 2p (G ¼ 0) to 0 (G / N). These results are explained

by the theoretical limit in patterning time, for 1DEP and

nonzero G, by T#, h#=G1 T#G/N, where h#=G represents

the settling time by gravity alone and T#G/N is the DEP

patterning time along the bottom wall. The latter term is

nearly constant for h#. 1, and T# approaches the theoretical

limit as h# and G increase.

To explain these phenomena, it is helpful to refer back to

Fig. 3. The arcing pathlines indicate that downward particle

motion occurs mainly in the upper half of the chamber,

whereas particles converge laterally to the pattern in the

lower half of the chamber. Because DEP force and particle

velocity are greatest near the electrodes, downward motion is

rapid for �DEP and slow for 1DEP; conversely, the lateral

convergence is slow for �DEP and rapid for 1DEP.

Because gravity accelerates the downward motion that is

already rapid with �DEP but slow with 1DEP, it has only

a slight effect on patterning by �DEP but a profound effect

by 1DEP.

MODEL VALIDATION

The DEP patterning kinetics model was evaluated

using polystyrene microspheres as model particles. Because

the polystyrene beads in water experience negative DEP at

high frequencies, the patterning chamber was oriented onto

the microscope stage such that the upper chamber wall

contained the electrode array (Fig. 8 A). The beads were then

introduced into the chamber and allowed to settle randomly

onto the bottom slide (shaded circles), such that patterning

would occur in a single z-plane observable by conventional

light microscopy. Upon electrode excitation, particles moved

laterally toward field minima located opposite the electrodes

(open circles).

FIGURE 8 (A) Schematic of video microscopy setup for validation of DEP patterning kinetics. Beads initially settle randomly (shaded circles). Application

of AC voltage aligns beads (open circles) under the electrodes (solid and vertical shaded bars). Spacing between upper and lower glass slides (h) was adjusted

between 34 and 110 mm. Electrode width varied from w¼ 20–50 mm, whereas electrode spacing was constant at d ¼ 150 mm. Two bead diameters, 2R ¼ 7.2

and 9.7 mm, were utilized. (B) Typical video images (h¼ 55 mm; w¼ 50 mm; 2R¼ 9.7 mm) of patterning beads at time t¼ 0, 1, and 6 s. Scale bar: 100 mm. (C)

Typical patterning kinetics plotted as the distance away from the patterned location (mean 6 SD, n $ 6) for h ¼ 75 mm; w ¼ 30 mm; 2R ¼ 9.7 mm. (D–F)

Summary of validation experiments measuring tpat,60 (or T#0.4), i.e., time for a bead to move from x ¼ 60 mm (or x# ¼ 0.4) to 1 mm away from the pattern

location, for w#¼ 0.2. The improved analytical model (solid line) correctly predicts the optimal chamber height and the slower patterning kinetics at greater and

smaller heights. Larger beads pattern faster (D; solid symbols and lower lines), and data points converge upon nondimensionalization (E). The improved BC

solution results in closer prediction of patterning efficiency than the linear BC (dotted line). (F) Summary of validation experiments varying electrode width for

height h ¼ 55 mm and comparison to improved (solid line) and linear (dotted line) analytical models.
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To test the spatial effects of the patterning efficiency

model, chamber height (h), electrode width (w), and particle

radius (R) were varied. Electrode spacing, excitation voltage

and frequency, and composition of particles and the

surrounding fluid were held constant. Parameters are

summarized in Table 1.

Materials and methods

Polystyrene microspheres, containing 2% divinyl benzene,

density 1.062 g/cm3, were obtained from Bangs Laboratories

(Fishers, IN) in two sizes (7.20 mm and 9.70 mm, 61.0%

coefficient of variation). Stock microsphere solutions were

washed twice and resuspended in deionized water for

validation experiments.

Interdigitated electrodes, spaced d ¼ 150-mm apart and w
¼ 20–50-mm wide, were microfabricated using conventional

processes. Glass slides coated with transparent indium tin

oxide (ITO) to a sheet resistance of 4–8 V per square were

purchased from Delta Technologies (Stillwater, MN). Slides

were cleaned and photolithographically patterned using

S1813 photoresist (Shipley, Marlborough, MA) and ultravi-

olet exposure through a custom emulsion mask. Next,

exposed ITO was etched for 4 min with gentle agitation in

a solution of 20% hydrochloric acid and 5% nitric acid,

heated to 55�C. Etched slides were then sonicated in acetone

to remove photoresist and cleaned. Adhesive copper tape

provided electrical contact with the ITO film.

The patterning chamber was formed by sandwiching a thin

silicone spacer between the interdigitated electrode array and

a bare glass slide drilled with holes for fluidic entry and exit.

The spacer thickness determines chamber height, h, and is

composed of poly(dimethyl siloxane) (PDMS; Sylgard 184,

Dow Corning, Midland, MI) to provide a watertight seal. The

resulting fluid chambers were 25-mm long, 5–10-mm wide,

and 34–110-mm high. To reduce particle adhesion, chamber

walls were treated with poly(ethylene glycol)-disilane (molec-

ular weight of 3400, Shearwater Polymers, Huntsville, AL).

The beads were introduced into the chamber via syringe

and allowed to settle randomly onto the electrode array.

Electrical excitation (500 kHz sine wave, 9.3 Vrms) generated

by an Agilent 33120A signal generator (Agilent, Palo Alto,

CA) caused lateral particle motion toward field minima

located opposite the electrodes. An oscilloscope connected

in parallel measured applied voltage. Particle motion was

observed using a Diaphot 300 inverted microscope (Nikon,

Melville, NY) with an analog video camera and processor

(Dage-MTI VE-1000, Michigan City, IN). Video frames

captured at 0.5–5 Hz were calibrated and segmented with

Scion Image (Scion, Frederick, MD) to obtain particle

centroid data. Particle kinetics were then analyzed with

MATLAB (The MathWorks, Natick, MA). Data were

nondimensionalized according to Eq. 16, using measured

values for most parameters (Table 1) and Eq. 4 to estimate

the Clausius-Mossotti factor.

Validation results

In Fig. 8 B, representative video images depict bead

patterning behavior by �DEP. For actual validation experi-

ments, fewer beads were introduced into the chamber such

that nearby particles would not be encountered during

patterning. Approximately six to eight beads per microscope

field were selected for analysis based on: 1), their isolation

from nearby beads, to prevent disturbances from particle-

particle attraction or local fluid flow, and 2), their initial

location far from the electrode pattern, to provide the most

information on patterning kinetics. Thus, beads located

originally at x . 60 mm (x# . 0.4) were accepted for

tracking to obtain sufficient data points.

Typical patterning kinetics are described in Fig. 8 C.

Because the electrodes were spaced d ¼ 150-mm apart, no

particle was ever more than d/2 ¼ 75 mm away from the

nearest field minimum (pattern location), located below the

nearest electrode at x ¼ 0. Particles that were initially far

(40–75 mm) away accelerated toward this position, but near

the pattern (,40 mm away), particle velocity gradually

decreased. The ‘‘improved BC’’ analytical model predicts

the sigmoidal position versus time curve closely, especially

where particles are further away (larger x). Closer to the

patterned location, the improved model predicts faster

motion and shorter patterning time than experimental

measurements. The ‘‘linear BC’’ analytical model predicts

velocities about two times higher and patterning time about

three times faster.

To demonstrate the effect of chamber geometry on

patterning time, experiments were repeated with six chamber

heights (h ¼ 34–110 mm; h# ¼ 0.23–0.73), two bead

diameters (2R ¼ 7.2 and 9.7 mm), and three electrode widths

(w ¼ 20–50 mm; w# ¼ 0.13–0.33) (Fig. 8 D). The patterning

time was recorded from an initial location at x ¼ 60 mm (x#
¼ 0.4) and designated tpat,60 (or T#0.4 in dimensionless form)

to ensure that sufficient beads were tracked per measurement

TABLE 1 Validation parameters

Parameter Value Unit Reference

Medium viscosity m 0.90 mPa s Measured

Medium conductivity sm 0.0001 S/m Measured

Medium permittivity em 80 e0 (Murrell and

Jenkins, 1994)

Particle diameter 2R 7.20/9.70* mm Measured

Particle conductivity sp 10�18 S/m (Mark, 1999)

Particle permittivity ep 2.5 e0 (Mark, 1999)

Pattern feature size d 150 mm Measured

Chamber height h 34–110 mm Measured

Electrode width w 20–50 mm Measured

Applied voltage Vrms 9.3 Vrms Measured

AC frequency v 500 MHz Measured

Clausius-Mossotti

factor

Re[fCM] �0.47 (Calculated; Eq. 4)

DEP time constant tDEP 14.7/8.07* s (Calculated; Eq. 16)

*For small/large microspheres.
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(n$ 6). Larger beads patterned faster for all geometries, and

upon nondimensionalization, data points and model curves

for different bead sizes converged to a single dimensionless

patterning time for a given chamber height (Fig. 8 E).

Notably, the model prediction of optimal chamber height

(;40 mm) is consistent with validation data. Heights .;50

mm (h# . 0.33) resulted in exponentially longer patterning

times, as exhibited in both the improved and linear analytic

models. Below h; 40 mm (h#, 0.27), patterning time also

slowed, reflecting the situation predicted by the model

wherein a diminished spatial field gradient slows patterning

in the central regions between electrodes (Fig. 4, E and F;

curve a). In fact, for h ¼ 34 mm (h# ¼ 0.23), particles .65-

mm away from the pattern locations (x# . 0.43) were not

observed to move at all during the experiment. This upturn in

patterning time is not reflected in the linear BC analytical

model (Fig. 8 E).

Electrode width effects are also consistent with the

improved model (Fig. 8 F). Wider electrodes result in faster

patterning, although no additional decrease in patterning

time is seen for w# . 0.5. The linear BC model again

underestimates patterning time, especially in the range used

for validation, w# ¼ 0.13–0.33.

DISCUSSION

Summary

This report examined the influence of various geometric and

material parameters on the speed at which particles pattern

by DEP forces. Faster patterning may be important to

minimize damage to sensitive particles, especially living

biological cells. An expression was derived for the time at

which all particles travel to an equilibrium position, by

1DEP or �DEP, within an interdigitated electrode array

chamber of varying geometry. Particle kinetics were solved

by a balance of forces, utilizing a new analytical expression

of DEP force.

In contrast to previous solutions for electric potential, the

solution presented here: 1), utilized a new method for

specifying the BCs at the electrode array plane, and 2),

specified a finite chamber height. First, numerical solutions

for different geometries were combined into an analytical

expression for the Neumann BC at the electrode substrate.

The resulting solutions for electric potential, field, and DEP

force have significantly greater accuracy than previous

analytical solutions. In addition, they are continuous in

position throughout the solution space, as well as in

geometric parameters.

Variations in these geometric parameters were investigated

to determine limitations of DEP patterning and for experi-

ment optimization. The theoretical models were validated

using inert microspheres, demonstrating good prediction of

both particle kinetics and patterning time (within ,50%)

without the use of fitted or empirical scaling factors.

Improved accuracy in the analytical DEP force solution

translated to a twofold better prediction of patterning time

compared to previous solutions (Fig. 8, C, E, and F).

Implications for cell patterning

The use of DEP forces for manipulation of living cells

requires minimization of potentially cytotoxic physical,

chemical, and electrical conditions. In particular, strong

electric fields may have a significant physiological impact on

a biological cell, due to current-induced Joule heating of the

medium and direct field interactions inducing transmem-

brane potentials (Glasser and Fuhr, 1998). Although these

effects can be reduced with low conductivity suspending

media and high-frequency fields, respectively, even mild

electric field conditions may cause subtle gene upregulation

(Archer et al., 1999). Furthermore, electric field-induced

damage is dependent on both duration and intensity of

exposure (Glasser and Fuhr, 1998). Therefore, selecting the

optimal patterning geometry (using Fig. 6) and materials

(using Eq. 19) is important to minimize the exposure time

(via maximal field gradient and DEP force) for a particular

applied field intensity. Alternatively, the optimized chamber

geometry may permit a decrease in the electric field strength

while maintaining an acceptable patterning rate, again

reducing possible cell damage. In general, patterning at the

fastest overall velocity (i.e., at the greatest tolerated applied

potential) appears to be advantageous, with the following

rationale. Transmembrane voltage (Vtm) is proportional to

applied voltage (V) but patterning time varies by V�2, such

that a linear measure of total exposure, Vtm 3 tpat }V�1, is

minimized at greater applied voltage. However, biological

systems rarely display linear responses to stimuli and this

analysis offers only a general guideline. Rapid patterning

further diminishes the exposure of cells to DEP buffers that

often lack standard tissue culture medium components (ions,

growth factors, proteins, and serum), and also reduces the

relative influence of additional forces (bulk convection,

Brownian motion) that may compromise pattern quality.

The parameters that lead to rapid patterning are summa-

rized in Table 2. From Eq. 19, low viscosity and high

permittivity of the suspending medium are desired. Although

standard cell culture media meet these requirements,

biomaterials for cell encapsulation (e.g., hydrogels) may

have significantly greater viscosity and thereby hinder

patterning speed. Patterning of polystyrene beads via

–DEP and cells by 1DEP is accelerated by low conductivity

media that also minimize Joule heating. Reducing the

characteristic feature length (electrode spacing) greatly

speeds patterning, because field strength is increased and

particles have less distance to travel, as do larger particles

because DEP force is proportional to volume. Increasing the

applied voltage accelerates patterning, but also raises

potentially detrimental electric field effects. For mammalian

cells, a limited range of electric field frequency is ideal,
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;1–10 MHz, that balances the maximal CM factor

magnitude (Eq. 4) with minimal induced transmembrane

potential at higher frequencies (Gray et al., 2003).

For all cases, patterning by 1DEP is faster than by �DEP.

Not only is the dimensionless patterning time lower for

1DEP for a given geometry (Figs. 4 and 5), the maximum

magnitude of the CM factor is twice as high for 1DEP (1.0)

than for �DEP (�0.5). Figs. 4, 5, and 7 demonstrate that

patterning time depends greatly on chamber geometry. In

general, reducing chamber height accelerates DEP patterning

by increasing electric field strength and nonuniformity.

However, at very small heights, the strong field gradients

become spatially confined (Fig. 4, E and F), such that overall

patterning is slow and incomplete. This effect, verified

experimentally in this work (Fig. 8), had not been previously

described in detail. For all cases, wider electrodes speed

patterning (Figs. 4 and 5). However, modulating electrode

width also affects the pattern shape by 1DEP, because field

maxima occur at the electrode edges (Fig. 3 B). In contrast,

location of field minima do not change with electrode width

(Fig. 3 A), such that this variable can be adjusted more freely

in �DEP patterning.

Because geometric variables influence patterning time so

greatly, the principal advantage of the efficiency model is

optimization of these parameters (Fig. 6). When a particular

pattern is desired (such as cells located a uniform distance

apart), an optimal height is determined using Eq. 19 and

Figs. 4 and 6 A. However, in microfluidic devices, chamber

(or channel) height is typically constant, and optimal

electrode spacing is determined using Eq. 21 and Figs. 5

and 6 B. Optimal height prediction from Fig. 6 (h# ¼ 0.28–

0.40 for �DEP, w# ¼ 0.2) was consistent with validation

experiments, as the h# ¼ 0.30 chamber showed the fastest

patterning. It must be noted that the optimization figures do

not consider particle size, although the model is valid for

chamber heights greater than twice the particle diameter

(‘‘Chamber optimization using model’’). When optimal

parameters cannot be chosen exactly due to other system

constraints, we found experimentally that it is advantageous

to select a larger rather than smaller height. This is because

suboptimal chamber heights show increased variation in

particle velocity during patterning (curves a versus c in Fig.

4 E), resulting in a zone of poor patterning control with

greater susceptibility to other forces (e.g., bulk fluid flow).

When several geometries are incorporated onto a single

device, overall optimization is easily achieved by plotting

dimensional patterning time and variables for each geometry.

In ‘‘Gravitational effects’’, we chose as an example a set of

three geometries previously used for analysis of 1DEP-

based particle aggregation, and showed that efficiency could

be increased over 200-fold for neutrally buoyant particles by

a simple reduction in chamber height from 30 mm to ;7 mm

(Fig. 6 C). The actual experiments (Markarian et al., 2003)

reported the behavior of nonbuoyant particles (G ¼ 0.01–

0.16), and showed unsuccessful patterning as feature size

decreases, despite the theoretical increase in DEP force as

FDEP }=E2 }V2=d3. We attribute these results in part to

a chamber that was too tall, as when the reported

experimental parameters were applied to the model (in-

cluding gravity, using Eq. 19 and Fig. 7 B), efficiency

improved 15-fold for all array geometries with the same

fourfold height reduction. Thus, optimal chamber height can

extend the reported lower limit on electrode dimension,

although further limitations due to particle or electrical

effects may still exist, as discussed below (‘‘Model

assumptions and additional forces’’).

Gravitational forces can evidently accelerate DEP pat-

terning, although the improvements are more pronounced for

1DEP than �DEP (Fig. 7). By �DEP, patterning time can

be reduced by ;50% with gravitational settling. In contrast,

1DEP patterning time is significantly decreased because

gravitational settling brings particles toward regions of high

field nonuniformity where DEP force is strong. In effect,

large chamber heights become feasible for 1DEP patterning

of particles with significantly different mass density. Also,

electric field exposure can be minimized by allowing

particles to settle in the absence of the field before DEP

patterning. However, biological cells, biomolecules, and

biopolymers typically have similar density to that of the

suspending aqueous solution (1.0–1.1 g/cm3), such that

G� 1, settling is relatively slow, and chamber height should

be carefully selected.

Using these tools, we have utilized DEP patterning in

preliminary biological experiments with a variety of media

and hydrogel formulations, several cell types (primary and

cultured mammalian fibroblasts, chondrocytes, and hepato-

cytes), and a number of geometries (parallel lines, planar

arrays, arbitrary shapes) (Albrecht et al., 2002), and

demonstrated a reduction in patterning time consistent with

the model (data not shown).

Model assumptions and additional forces

The patterning efficiency model assumes that particle

motion is dominated by DEP forces. Several reports have

demonstrated that electric field-derived fluid flow and

interparticle effects may contribute significantly to particle

TABLE 2 Optimal parameters for DEP patterning

Parameter Desired value Scaling

Medium viscosity m Low m

Medium conductivity sm Low*

Medium permittivity em High e�1
m

Particle size R Large R�2

Pattern feature size d Small d4

Chamber height h (Limited range) (Fig. 6)

Electrode width w Wide

Applied voltage Vrms High V�2
rms

AC frequency v (Limited range)

*For beads by �DEP and cells by 1DEP.
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motion. To aid in the use of the models for predicting

patterning efficiency, the conditions where DEP is the

dominating force are briefly discussed below.

Electrical effects

The use of high electric fields in DEP devices with

microscale dimensions may give rise to significant temper-

ature gradients, because power generation (W ¼ sE2) is

concentrated in a small volume. Electrohydrodynamic forces

arise from the spatial variation in fluid permittivity,

conductivity, density, and viscosity due to local temperature

changes from Joule heating. However, fluid flow by natural

convection is generally negligible for microelectrode devices

and aqueous solutions (Ramos et al., 1998).

The electrical force on a fluid is composed of Coulomb and

dielectric forces arising from gradients in conductivity and

permittivity, respectively. Coulomb forces dominate at low

frequencies and dielectric forces dominate at high frequen-

cies. For aqueous media, the crossover frequency is approx-

imately vc � 3=t (Ramos et al., 1998), where t ¼ em=sm is

the charge relaxation time of the liquid. Electrical forces are

proportional to medium conductivity and are reduced when

dielectric forces dominate, i.e., at frequencies greater than

fc ¼ vc=2p (Ramos et al., 1998). The crossover frequency

ranges from 100 kHz for water (sm ; 0.1 mS/m) to 1 GHz for

standard cell culture medium (sm ; 1.5 S/m).

Electroosmotic forces may also contribute to fluid flow,

due to the interaction of induced charges appearing at the

electrodes and the electric field. Fluid velocity is pro-

portional to surface charge density. The time to establish this

charge is on the order of t, such that it is reduced for

frequencies above f ¼ 1=ð2ptÞ:
Therefore, the patterning efficiency model as presented is

most accurate for low conductivity media and high-

frequency electrical excitation. These conditions are desir-

able for patterning of biological cells by 1DEP and polymer

beads by �DEP. However, high conductivity media are

necessary for �DEP cell patterning, such that estimates of

these electrical forces may be important for accurate

prediction of kinetics.

Particle effects

Nearby particles subjected to an electric field may interact due

to their induced dipoles, forming aggregates or pearl chains

(Jones, 1995). The ratio between this interparticle dipole force

and the DEP force is given by (Dussaud et al., 2000):

Fdi=FDEP ; 6jReð fCMÞjc
D

dc

; 6jReð fCMÞjc4=3 d

R
; (25)

where c is the volume fraction of the particles, dc;R=c1=3 is

the characteristic distance between adjacent particles, and D

is the characteristic length over which the electric field varies

(e.g., electrode spacing, d, for the interdigitated array). For

10-mm diameter particles or cells, the DEP force dominates

for suspension densities ,;50 million/ml.

As patterning progresses, local cell density increases near

the pattern locations and aggregates could form over time as

interparticle forces strengthen. Aggregate formation typi-

cally accelerates patterning. Taking for example two spheres

that form a doublet and align parallel to the field gradient,

drag force increases by ;30% (Lee and Leith, 1989),

whereas DEP force increases 1.8- to 4.8-fold (Jones, 1995),

depending on the Clausius-Mossotti factor. Clearly, velocity

of aggregates should be greater than individual particles, and

this behavior was observed experimentally (data not shown).

Therefore, the model overestimates patterning time when

particle aggregation occurs.

Model results may also be affected by changes in effective

viscosity, m, due to high local particle concentrations.

Effective viscosity increases with particle volume fraction by

m=m0 ¼ 11cc, where constant c ¼ 2.5 for dilute suspen-

sions of spherical particles without interaction (Einstein’s

formula), or c ; 5.5 for more concentrated systems (Happel

and Brenner, 1965). As particle volume fraction rises

locally during patterning, particle velocity would be

expected to decrease due to increased apparent viscosity.

However, a relatively dense suspension of 50 million/ml

mammalian cells would increase apparent viscosity by only

;7–14%.

Thus, later stages of patterning may be characterized by

kinetics that are accelerated by particle aggregation but

slowed by viscosity effects. Because these effects are

counteracting and generally small in magnitude, they are

unlikely to affect the conclusions of this model for relatively

dilute systems.

Electric field simplifications

The electric field and DEP force models included several

simplifications. Only the dipole contribution to the DEP

force was calculated, although this is known to be a poor

approximation at the electrode edges (Voldman et al., 2001).

However, the model is valid for particles smaller than the

electrode spacing (d . 2R), wherein errors of 1–5% were

reported (Schnelle et al., 1999). Inaccuracies in the force

calculation near the electrodes have less influence on the

patterning efficiency model, because: 1), most patterning

time occurs away from the electrode edges (where motion is

slower), and 2), electrohydrodynamic effects are concen-

trated at the electrodes.

The net DEP force on a particle is assumed to be equal to

the force at the particle centroid in the absence of particles.

Therefore, the particle kinetics model does not account for

the possible distortion of the electric field by the presence of

particles. These assumptions are also valid where the

particles are small relative to the electrode spacing, and for

suspensions that are not too dense.
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CONCLUSIONS

The kinetic model developed in this article predicts

patterning time under conditions where DEP force domi-

nates, i.e., low conductivity media, high-frequency AC

excitation, and relatively sparse particles smaller than

electrode features. Predicted patterning time was accurate

to ;50%, and predicted optimal geometry was consistent

with validation experiments, despite the simplifying as-

sumptions and other driving forces. When DEP force is

maximal via optimized geometry, these additional forces will

be generally lower because geometric variables affect

patterning efficiency more significantly than the electro-

hydrodynamic forces. In contrast, when DEP forces are

weak, forces such as interparticle attractions may dominate,

resulting in particle aggregation instead of patterning

(Markarian et al., 2003).

The planar parallel interdigitated electrode array geometry

modeled here is the most common among DEP devices.

However, more complex electrode designs are necessary for

creating arbitrary patterns. Nonetheless, order of magnitude

calculations from the simplified two-dimensional model can

be applied to an arbitrary electrode geometry taking a local

characteristic feature size as d. Alternatively, the model

strategy outlined here can be generalized to 3-D, from

modeling the electric potential to determining 3-D velocity

fields. Similarly, the use of numerical FEM data to define the

boundary conditions for an analytic solution is a strategy that

can improve the accuracy of any model requiring mixed BC

types, and could be adapted for geometries more complex

than the interdigitated electrode array. Finally, the model

formulation can be adapted to incorporate other driving

forces where necessary.

The model serves as a predictive tool to determine the

geometric and material conditions that minimize exposure to

the potentially toxic DEP patterning environment. We have

utilized the model to effectively reduce the patterning time of

living biological cells within various biomaterials (Albrecht

et al., 2002). The ability to reduce patterning time from hours

to seconds via a change in chamber height may extend the

incorporation of DEP forces into robust and sensitive

biological methods, devices, and assays, where perturbation

of cell behavior must be avoided. The use of DEP for rapidly

positioning cells, without relying on surface chemistry, may

become an important tool for future cell biology, tissue

engineering, and biotechnology applications.
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