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Liver failure is the cause of death for over 30,000 patients
each year in the United States alone.When this process occurs
in healthy individuals with normal livers, it is termed acute
liver failure (ALF). Loss of liver function that complicates
chronic liver disease is termed acute-on-chronic liver failure.
Liver transplantation is curative for ALF and acute-on-
chronic liver failure.1-6 Over the years, survival after trans-
plantation has improved with advances in both patient man-
agement and surgical techniques, but the procedure is not
always available in a timely fashion,7-9 prompting new surgi-
cal approaches such as split-liver transplantation, procure-
ment from living donors, and auxiliary liver transplantation.10

The problem of organ shortage is compounded by difficulty in
predicting the outcome of liver failure. The King’s College
prognostic criteria have been adopted by most centers,11 al-
though they fail to identify patients at low risk of dying.12

Alternatives to whole organ transplantation for liver dysfunc-
tion are under active investigation. Figure 1 schematically
depicts the 4main cellular approaches that are currently being
investigated: isolated cell transplantation,13-17 tissue engi-
neering of implantable constructs,18-27 transgenic xenotrans-
plantation,28-31 and extracorporeal bioartificial liver devices
(BAL). Extracorporeal support for patients suffering from
liver failure has been attempted for over 40 years. Temporary
systems have been developed to attempt to expedite recovery
from acute decompensation, facilitate regeneration in ALF, or
serve as a bridge to liver transplantation.
Various nonbiological approaches have met with limited

success, presumably because of the role of the synthetic and
metabolic functions of the liver that are inadequately replaced
in these systems. Hemodialysis, hemoperfusion over charcoal
or resins or immobilized enzymes, plasmapheresis, and
plasma exchange have all been explored. Conversely, purely
biological approaches have shown encouraging results in
some cases but have been difficult to implement in the clinical
setting. In addition to orthotopic liver transplantation, these
include whole organ perfusion, perfusion of liver slices, and
cross hemodialysis.32

Bioartificial devices typically incorporate isolated cells into
bioreactors to simultaneously promote cell survival and func-

tion as well as provide for a level of transport seen in vivo.
Several previous reviews have addressed the field of BAL de-
velopment.33,34 We will highlight recent advances in liver bi-
ology and bioengineering that have impacted the field. The
important issues include choice of cellular components, sta-
bilization of hepatocyte phenotype, bioreactor design, regula-
tion and safety, and clinical trials.

CELLULAR COMPONENT OF BIOARTIFICIAL
LIVER DEVICES

The full complement of cellular functions required in BAL
devices to effect positive clinical outcomes has not been de-
termined. To address this problem, surrogate markers of each
class of liver-specific functions typically are characterized in-
cluding: synthetic, metabolic, detoxification (phase I and II
pathways), and biliary excretion. The implicit assumption is
that hepatocytes capable of a wide array of known functions
will also express those unmeasured (or unknown) functions
that are central to their metabolic role. Table 1 describes cell
types that have been used and are currently being evaluated
for use in BAL. Each of these—primary hepatocytes, cell lines,
and stem cells—should be evaluated on the basis of availabil-
ity, potential adverse interactions, and efficacy in providing
liver-specific function.
Primary porcine hepatocytes are most commonly used in

devices undergoing preclinical and clinical evaluation. Stud-
ies have also been conducted with cells isolated from rabbit,35
canine,36 and rodent species.37 There is relatively limited in-
formation on the maintenance of liver-specific functions of
porcine hepatocytes in vitro. Although some functions such as
albumin secretion may be stable,38,39 others such as cyto-
chrome P450 decline under standard culture conditions. In
general, primary hepatocytes are well known to require spe-
cific microenvironmental cues to maintain the hepatic pheno-
type in vitro, and it is likely that a more detailed investigation
of culture conditions will improve the stability of porcine
hepatocytes in vitro as has been the case for rodent hepato-
cytes.
Primary human cells would be ideal, but like whole organs,

they are in limited supply. They have been used for BAL ap-
plication (Gerlach et al., personal communication) as well as
for hepatocyte transplantation.14 A persistent paradox of hu-
man hepatocytes is their facile proliferation in vivo but static
nature in culture, despite significant progress in stimulating
DNA synthesis of rodent hepatocytes in culture.40-42 Recent
reports regarding underlying differences in telomerase ex-
pression in humans and rodents may play a role in this phe-
nomenon.43
The growth limitations of primary cells has spurred at-

tempts to develop cell lines that can proliferate in culture
while maintaining liver-specific functions. Many cell lines
have been established by retroviral transduction or lipofection
of the simian virus 40 tumor antigen gene (SV40Tag) whose
gene product binds to cell cycle regulator proteins Rb and
p53. Spontaneous immortalization has been documented as a
result of collagen gel sandwich cultures or cocultures.44 Cell
lines derived from hepatic tumors, such as C3A (a subclone of
HepG2), have already been used in clinical trials.45 We have
attempted to categorize the function of a variety of cell lines by
tabulating markers of synthetic, metabolic, and detoxification
(Table 1). The risk of transmitting oncogenic substances or
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cells into the patient’s circulation remains a concern. Efforts
to improve the control and safety of cell-based therapies with
immortalized cells has resulted in the use of temperature-
sensitive SV40Tag,46 Cre-loxP–mediated oncogene exci-
sion,47 and integration of suicide genes such as HSV-tk.48 In
the case of tumor-derived cell lines, filters preventing trans-
mission have been implemented in the BAL design as an extra
precaution. Finally, stem cells are being considered for ther-
apy of liver disease. Potential sources include embryonic stem
cells, adult liver progenitors, and transdifferentiated nonhe-
patic cells.49-58

STABILIZATION OF PRIMARY HEPATOCYTE PHENOTYPE

Although primary hepatocytes represent the most direct
approach to replacing liver function in hepatic failure, they
are anchorage-dependent cells and notoriously difficult to
maintain in vitro. When enzymatically isolated from the liver
and cultured in monolayer or suspension cultures, they rap-
idly lose adult liver morphology and differentiated functions.
Many investigators have looked to the microstructure of the
liver to provide inspiration for culture models that replace the
lost cues from the hepatocyte microenvironment in vivo.
Typical approaches involve manipulation of the extracellu-

lar matrix environment, media composition, or promotion of
cell-cell interaction (both homotypic and heterotypic). Extra-
cellular matrix (ECM) modulation has included both varia-
tions in composition and topology.59-66 Sandwich culture63
was designed to mimic the microenvironment of the adult
hepatocyte where cells are sandwiched by extracellularmatrix
in the space of Disse. Cells in this configuration stably express
many liver-specific functions; however, attempts to scale-up
this culture method have met with limited success thus far.
Modifications such as hormonally defined media55,67 and

addition of low concentrations of dimethyl sulfoxide68 or
dexamethasone69 are known to help stabilize hepatocyte mor-

phology, survival, and liver-specific functions. However,
these approaches are inapplicable to BAL designs because of
systemic exposure of patients to these specialized and non-
physiologic media components.
Finally, liver-specific functions are stabilized in hepato-

cytes that are cocultured with nonparenchymal cells (hetero-
typic interaction—see Bhatia et al.70 for review). Although the
precise molecular mechanisms that underlie the coculture ef-
fect are not known, it is likely that a highly conserved signal-
ing pathway is involved. Although this concept has not been
applied to a clinical BAL device, it merits consideration.

BIOREACTOR DESIGN

Continued innovation in engineering and material science
has contributed greatly to the development of extracorporeal
liver-assist devices. Coupled with new discoveries in cell
sourcing and hepatocyte stabilization, BAL devices tailored
for use with hepatocytes are becoming a reality. Table 2 sum-
marizes the bioreactor designs that have been proposed and
studied. There are 4 main types, each with inherent advan-
tages and disadvantages: hollow fiber, flat plate and mono-
layer, perfused beds or scaffolds, and beds with encapsulated
or suspended cells. A successful and clinically effective BAL
device should satisfy a few key criteria: adequate bidirectional
mass transport, maintained cell viability and function, and
potential for scale-up to therapeutic levels.

Bidirectional Mass Transfer. In BAL devices, bidirectional
mass transfer is needed to provide nutrients to sustain cell
viability and allow export of therapeutic cell products. Al-
though most device designs address this, there are important
limitations involving the use of membranes, diffusivity of key
solutes, and spatial uniformity.
Semipermeable membranes provide selectivity for the size

of biological molecules that will be exchanged between the
patient and the device. They are inherent in hollow fiber de-
vices but have been used also in flat-plate and perfusion sys-
tems.71,72 In many hollow fiber devices, the membrane must
simultaneously function as a perm-selective barrier and as a
scaffold for cell attachment. As noted earlier, the interaction
of the hepatocyte with its microenvironment dramatically af-
fects stability and function. Therefore, this design may not
allow for optimization of both function and transport. Con-
versely, hollow fiber designs provide a larger surface area-to-
volume ratio than flat plate designs, thus improving metabo-
lite transport and minimizing dead volume.
The membrane in a BAL device is typically characterized by

its molecular weight cutoff, which is selected both to prevent
the exposure of bioreactor cells to components of the immune
system and to block the transport of larger xenogenic sub-
stances into the circulation. The aim of allowing free transport
of larger carrier proteins such as albumin (�60 kd) while
preventing transport of immunoglobulins (�150 kd), com-
plement (�200 kd), or viruses has led most groups to choose
a membrane molecular weight cutoff of 100 to 150 kd. Mem-
branes also prevent the migration of cells into the patient’s
circulation, although case reports of cellular translocation ex-
ist. While transport in BAL devices is a combination of con-
vective and diffusional phenomena, mass transfer limitations
of key nutrients to and from the cellular compartment often
arise because of diffusion resistances. In contrast, transport in
the liver is achieved primarily by convection along the sinu-
soid with short diffusion distances (�5 �m) across the space
of Disse. Barriers to diffusive transport include membranes,

FIG. 1. Approaches to cellular therapies for the treatment of liver disease.
Extracorporeal devices perfuse patient’s blood or plasma through bioreactors
containing hepatocytes. Hepatocytes are transplanted directly or implanted
on scaffolds. Transgenic animals are being raised to harvest a humanized
liver.
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collagen gels, and nonviable cells. Some designs use encapsu-
lated cells in perfusion systems, which provide immunoisola-
tion, but also increases diffusion resistance.74-76 Packed bed
reactors offer improved mass transfer by allowing direct con-
tact of cells on microcarriers or packing material with the
perfusing media.36,77-79
Another aspect of current BAL designs is the universal ab-

sence of functional biliary excretion into an isolated compart-
ment. In current configurations, even primary hepatocytes
that regain polarity in vitro (e.g., spheroids or coculture) ex-
crete biliary constituents into the surrounding fluid, which
then recirculate continuously. In this regard, addition of a
nonbiological adjunct such as an albumin dialysis module
may complement many existing BAL devices. In the long-
term, culture environments that promote a separate func-
tional biliary compartment will greatly improve the design of
BAL devices.
Oxygenation is key to hepatocyte function and may be

suboptimal in current BAL devices.80-85 Hollow fiber com-
partments81 or nonwoven fabric scaffolds82 with fibers for
gas delivery83 may improve oxygen delivery. Geometric
constraints also may affect mass transport in a BAL. Cell
distribution and flow should be uniform. A single mono-
layer culture is easily perfused, but a series of stacked plates
may introduce shunting through regions of low resistance.

Hollow fiber devices present difficulty in achieving homo-
geneous cell distribution during innoculation through the
tight matrix of capillaries. Uniform perfusion of packed-
bed reactors is a classic engineering problem. Distribution
of fluid flow is greatly dependent on the characteristic of
the packing material. Larger, rigid particles will yield well-
distributed flow but a decreased surface area for cells,
whereas smaller, porous packing will result in clogging and
fluid channeling.86 A packed bed reactor built around a
microchanneled scaffold is an example of one designed
explicitly to reduce heterogeneous perfusion and improve
the transport characteristics of the devices.79

Cell Viability and Function. One of themajor obstacles to BAL
offering long-term treatment is the inability to maintain
highly functional hepatocytes in vitro. Current device designs
do very little to integrate an appropriate microenvironment
for hepatocytes. Gel entrapment and use of spheroidal aggre-
gates have been introduced into variousmembrane-based sys-
tems to provide chemical and topological ECM cues or cell-
cell interaction; however, this introduces an additional
diffusion barrier.65,75,79,87-89 Single cell suspensions, used in
some devices because of their desirable transport properties,
quickly lose metabolic capacity.90 Some packed bed de-
signs77,78 and one hollow fiber device91 seed cells on micro-
carriers before device assembly. While microcarriers provide

TABLE 1. Cell Sources for Extracorporeal Bioartificial Liver Devices

Comments References

Primary cells

Porcine Xenogenic, porcine endogenous retrovirus, large scale isolation, environment-
dependent function (though some functions more stable than rodent and
human)

Margulis et al.,90 Patzer et al.,106

Demetriou et al.,107 and
Gerlach et al.108

Rabbit Xenogenic, small-scale isolation, environment-dependent liver-specific
functions

Matsumura et al.35

Human Low availability, heterogeneous donors, environment-dependent function Strom et al.14

Immortalized cells Source Synthesis Metabolism Detoxification*

C8-B Rat, SSR69 (SV40T, HSV-TK,
neoR, LoxP)

�mAlb NR �mUGT1 Cai et al.48

HepZ Human, pCMV, pSV2neo �mAlb NR �P450 1A2 Werner et al.109

OUMS-29, NKNT-3 Human fetal, pSV3neo or SSR69 �mAlb �urea, �mGS �mGST Kobayashi et al.47,110

HepLiu Porcine, Blue Tag, pRSVneo �pAlb �urea �P450 Liu et al.111

Yoon Human fetal, SV40T �pAlb �urea �P450 2D6 Yoon et al.112

HH25, HHY41 Human, spontaneous �pAlb, �mAFP �mG6Pase �P450 1A Kono et al.44 and
Roberts et al.113

Tumor-derived cells Source Synthesis Metabolism Detoxification

Hep G2 Hepatoblastoma �pAFP, �pAlb �mPK, �urea �P450 Kelly et al.114

C3A Hepatoblastoma �pAFP, �pAlb �urea P450 (�IA1, �3A4) Nyberg et al.115

Wang et al.116

HuH6, JHH-2 Hepatoblastoma �mAFP, �mAlb �mOCT �mADH Kobayashi et al.110

Potential stem cell sources

Embryonic Derived from blastocyst or germ cells, pluripotent, differentiation to hepatocytes not
yet reported in vitro

Shamblot et al.50

Thompson et al.49

Progenitor Oval/progenitor cells are facultative stem cells, hepatoblasts isolated from fetal livers
are bipotential

Petersen et al.51

Kubota et al.55

Transdifferentiated Pancreas ductal cells induced to hepatic lineage, hematopoietic stem cells produce
hepatocytes in liver

Shen et al.117

Theise et al.56

Abbreviations: �m, mRNA expression; Alb, albumin; NR, not reported; UGT1, UDP-glucuronosyltransferase 1; P450, cytochrome P450; GS, glutamine
synthetase; GST, glutathione-S-transferase; �p, low protein secretion; �p, high protein secretion; AFP, �-fetoprotein; G6Pase, glucose-6-phosphatase; PK,
pyruvate kinase; OCT, ornithine carbamoyltransferase; ADH, alcohol dehydrogenase.
*Basal levels (i.e., noninduced).
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a substrate for anchorage, data from hepatocyte cell culture
suggest that these cells will likely detach in a few days and die
as they do in monolayers. Along with providing adequate at-
tachment, future devices should consider integrating engi-
neering strategies for efficient transport, environments that
optimize cell-ECM interactions and cell-cell interactions, and
relevant chemical stimuli.

Scale-Up. For a device to become a clinical reality, it must be
scaled to a size that provides effective therapy. Studies indi-
cate that between 10% and 30% of normal liver mass is needed
to sustain life, which in adults, corresponds to 150 to 450 g of
cells. Clinically tested devices incorporate between 1 and
500 g of hepatocyte mass. The current solution for scaling up
hollow fiber devices involves increasing cartridge size81 and
using multiple cartridges.92 Systems using spheroids or mi-
crocarriers are easily scaled to the needed cell mass but may
entrain a considerable dead volume (priming volume). Flat or
stacked plate designs raise similar concerns as well as the
problem of heterogenous flow distribution and channeling
upon scale-up.

Nonbiological Adjuncts. Hemoperfusion, in use since the
1960s, removes toxins but also some useful metabolites

(growth factors, clotting factors, etc.) from blood93 or
plasma94 circulating through a charcoal column; the col-
umn may also activate leukocytes, causing cytokine re-
lease. One bioartificial device, the HepatAssist system,
which is currently in clinical trials, places a charcoal col-
umn before the hollow fiber cell cartridge.95 Another
method called hemodiadsorbtion minimizes direct contact
with charcoal by passing the blood through a flat mem-
brane dialyser containing a suspension of charcoal and ex-
change resin particles. The BioLogic-DT developed by
HemoCleanse is based on this and has been evaluated clin-
ically in patients with ALF.96 As we shall see later, nonspe-
cific removal of circulating biochemical species has not
resulted in a clear survival benefit.11,32 The Molecular Ad-
sorbent Recirculating System involves dialysis against re-
circulated albumin.97 The device is more selective than
charcoal hemodiadsoprtion in that it uses a membrane im-
pregnated with albumin to facilitate the clearance of albu-
min-bound toxins. The device has proven especially effec-
tive in reducing blood levels of bilirubin and bile acids in
cholestasis and liver failure.

TABLE 2. Bioreactor Designs

Hollow Fiber Flat Plate and Monolayer Perfused Beds/Scaffolds Encapsulation and Suspension

Pros: attachment surface, potential for
immunoisolation, well characterized,
cells protected from shear

Pros: uniform cell distribution
and microenvironment

Pros: ease of scale-up,
promotes 3-dimensional
architecture, minimal
transport barrier

Pros: ease of scale-up, uniform
microenvironment

Cons: nonuniform cell distribution,
transport barrier with membranes or
gels

Cons: complex scale-up,
potential large dead volume,
cells exposed to shear, low
surface area-to-volume ratio

Cons: nonuniform perfusion,
clogging, cells exposed to
shear forces

Cons: poor cell stability in suspension,
transport barrier due to
encapsulation, degradation of
microcapsules over time, cells
exposed to shear forces

● Extracapillary cryopreserved cells on
microcarriers (Rozga et al.91)

● C3A cells cultured in extracapillary
space (Sussaman et al.118)

● Multicompartmental interwoven
fibers with extracapillary seeding
and oxygenation (Gerlach et al.81)

● Cells entrapped in contracted gel in
interlumenal space (Nyberg et al.119)

● Cells entrapped in collagen gel in
extracapillary space (Naka et al.65)

● Tricompartmental coaxial hollow
fibers (Macdonald et al.120)

● Extracapillary seeding with in-line
oxygenation (Patzer et al.106)

● Dialysis against circulating
hepatocytes (Greg Szebo; Exten, Inc,
San Diego, CA)

● Spirally-wound fabric scaffold and
integrated hollow fiber oxygenation
(Flendrig et al.83)

● Dialysis against cell
suspension (Matsumura et
al.35)

● Flat membrane reactor with
cell in sandwich culture (De
Bartolo et al.72)

● Stacked plates of monolayer
culture (Sheil et al.121)

● Stacked plate reactor with
monolayer culture (Uchino
et al.36)

● Monolayer coculture with
membrane oxygenation
(Tilles et al.71)

● Collagen gel sandwich
culture bioreactor (Taguchi
et al.122)

● Radial flow through packed
bed, cells on glass
microcarriers (Kawada et
al.78)

● Microchanneled
polyurethane packed bed
with spheriods (Gion et
al.79)

● Polyvinyl resin cubes
seeded with cells in a
packed bed (Yanagi et al.77)

● Murine cell line on porous
carriers in packed-bed
(Fassnacht et al.123)

● Radial flow through
polyester fabric cell
scaffold (Naruse et al.82)

Encapsulation:
● Spouted bed perfusion with
encapsulated spheroids
(Takabatake et al.124)

● Fluidized bed of alginate
encapsulated cells (Dore et al.76)

● Encapsulated spheroids in
perfusion chamber (Dixit et al.75)

● Multicomponent capsules
containing rabbit hepatocytes
(Matthew et al.125)

● Entrapped aggregates in glass bead
packed bed (Li et al.126)

● Hydrogel entrapped cells on
rotating disks with perfusion
(Yanagi et al.74)

Suspension:
● Perfusion chamber with membrane
isolated cell and charcoal
suspension (Margulis et al.90)

● Cell suspension with a centralized
spinning filter (Sakai et al.89)
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REGULATION AND SAFETY

Because of the hybrid nature of BAL, the regulatory envi-
ronment has been evolving. Although BALs were originally
treated as devices, the biological component of these devices
fit the criteria for biologics and the secretory products the
criteria for drugs. Current devices are being regulated as drugs
through the Center for Biologics and Evaluation Research of
the Food and Drug Administration. New guidelines for these
and other hybrid devices are being developed by a consensus-
based group at the American Society of Testing and Materials
in conjunction with other organizations such as the Interna-
tional Standards Organization. Because of their application to
ALF patients for whom other therapies do not exist, some
devices have undergone fast-track review as orphan drugs.
The safety concerns for BAL devices are similar to those for
other cellular therapies and include immune reactions to for-
eign antigens, xenozoonosis, and escape of tumorigenic cells.
Antibodies against porcine antigens have been detected in the
serum of patients treated with BAL devices, although the clin-
ical impact of this finding is not clear.98 High titers are not
generated for 1 week (IgM) to 3 weeks (IgG); therefore, im-
mune rejection may play a more significant role in repetitive
applications of BAL therapy. BAL devices containing human
cells or cell lines may be most appropriate for repetitive clin-
ical treatments, as for patients with chronic liver disease and
multiple bouts of acute decompensation. The addition of
downstream filters, to guarantee the removal of immortalized
cells from the circulating fluid, has been generally accepted as
a suitable precautionary measure.
With regard to xenozoonotic infections, studies also have

suggested a risk from agents such as PERV,73,99,100 which is
ubiquitous in the genome of bred pigs. Although PERV has
been shown to infect human tissue in vitro,101 28 patients who
underwent treatment with a porcine-based BAL device all
tested negative for PERV,102 indicating that humans may be
nonpermissive for this infection through ALF plasma.
The design of clinical trials for BAL devices has proven to be

very challenging for a number of reasons. First, the course of
liver failure is variable and etiology dependent. Animal mod-
els using hepatotoxins, ischemia, obstruction, or hepatectomy
each have had limited predictive ability. Mental-status
changes associated with hepatic encephalopathy are difficult
to quantify clinically and even less evaluable in animal mod-
els. Thus, patients should be randomized to BAL devices while
controlling for both the etiology and the stage at which sup-
port is initiated. A second difficulty is the choice of the control
arm. Typically, patients are randomized against standard
medical therapy; however, there are clear differences between
extracorporeal perfusion of any kind and noninvasive ther-
apy. For example, there have been anecdotal observations of
improvements in hemodynamic stability due to cytokine ad-
sorption on inorganic surfaces in extracorporeal circuits. Sim-
ilarly, complications caused by catheterization and anticoag-
ulation may bias the clinical outcome. One alternative is to
use a nonbiological control such as continuous veno-venous
dialysis, which is often used in this patient population in the
setting of hepatorenal failure. This would also allow for ex-
plicit control over core body temperature during extracorpo-
real perfusion. This may be particularly important in light of
recent data suggesting that hypothermia can decrease intra-
cranial pressure and reduce brain edema. The third difficulty
is the choice of the clinical end point. Current trials have used

efficacy end points of 30-day survival and 30-day transplan-
tation-free survival. Secondary end points for these studies
include improvement in cerebral perfusion pressure, mental
status, and encephalopathy stage, in addition to other param-
eters. The trials are confounded by the fact that ALF patients
are transplanted variably but sometimes very quickly, de-
pending on the eligibility criteria of a given center and organ
availability. One potential alternative design would be to
study 30-day survival and secondary end points in patients
who are not transplant candidates and realistically assess the
potential of BAL devices to support liver functions.

ONGOING CLINICAL TRIALS FOR EXTRACORPOREAL
BIOARTIFICIAL DEVICES

Although no extracorporeal bioartificial liver device has
received FDA approval for use in acute or chronic liver failure,
a number of clinical trials are underway (Table 3). A difficulty
that arises when examining the clinical data is the inability to
determine the role of live, functional hepatocytes as opposed
to extracorporeal perfusion itself, given that some BAL de-
signs incorporate charcoal filtration. Ideally, a comparison
should be made between charcoal filtration alone, dead or
nonhepatocyte cells, and live hepatocytes given that nonhepa-
tocytes and dead hepatocytes provided survival benefit in
some animal models of ALF.103 Also inherent in the present
data are a number of practical issues: Are the cells fresh or
frozen? Should the device be perfused with plasma or whole
blood? What is the role of heparin versus citrate anticoagula-
tion? These issues are critical both for patient well-being and
for survival of hepatocytes in the device. The limited function
of cryopreserved hepatocytes has been well documented, yet
cryopreservation offers flexibility in timing and scheduling of
therapies.104 The use of whole blood has the advantage of
erythrocytes as oxygen-delivery vehicles for BAL, although
leukocyte activation and cell damage may occur. Conversely,
plasmapheresis and plasma perfusion preserve the viability of
hematopoietic cells, yet the solubility of oxygen in plasma is
very low. Similarly, heparin anticoagulation has been shown
in some studies to cause lipid accumulation and deleterious
effects on otherwise phenotypically stable hepatocytes.105
Each group has grappled with these trade-offs, and the out-
come remains to be seen. Even if these trials do not prove the
efficacy of BAL devices, the knowledge gained along with fu-
ture improvements in cell sourcing and stability will posi-
tively impact the next generation of devices.

SUMMARY

In light of the increasing incidence of liver disease and
continuing shortage of donor organs, cell-based therapies are
gaining attention as promising treatments for liver failure.
Currently, several extracorporeal bioartificial liver devices are
undergoing clinical evaluation. Their future use will depend
on the choice and stabilization of the cellular component.
Although cell lines offer a limitless cell source, primary hepa-
tocytes may be preferred because of their broad expression of
liver-specific functions. Xenogenic primary cells are available
in large quantities, but immunologic and infectious concerns
may necessitate the use of human cells or human-derived
cells. To improve and maintain functional primary hepato-
cytes, bioreactor designs must provide architecture that sup-
ports cell attachment, cell-cell interaction, cell-matrix inter-
action, and potential for scale-up. While the safety of BAL
devices has been established, there are no uniform standards
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of efficacy, which may vary with the etiology of the liver fail-
ure. Consensus is needed in clinical trial design, including
choice of end points, use of controls, and indications for en-
rollment. Also, a better understanding of the interplay be-
tween liver regeneration and BAL therapy will be critical to
optimizing the implementation of this modality.

Acknowledgment: The authors thank Magda Gramada for
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