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Engineering Liver Therapies for the Future

JARED W. ALLEN, M.S., and SANGEETA N. BHATIA, M.D., Ph.D.

ABSTRACT

Treatment of liver disease has been greatly improved by the advent and evolution of liver trans-
plantation. However, as demand for donor organs continues to increase beyond their availability,
the need for alternative liver therapies is clear. Several approaches including extracorporeal de-
vices, cell transplantation, and tissue-engineered constructs have been proposed as potential ad-
juncts or even replacements for transplantation. Simultaneously, experience from the liver biology
community have provided valuable insight into tissue morphogenesis and in vitro stabilization of the
hepatocyte phenotype. The next generation of cellular therapies must therefore consider incorpo-
rating cell sources and cellular microenvironments that provide both a large population of cells and
strategies to maintain liver-specific functions over extended time frames. As cell-based therapies
evolve, their success will require contribution from many diverse disciplines including regenerative
medicine, developmental biology, and transplant medicine.
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INTRODUCTION

DRAMATIC ADVANCES in surgical techniques and im-
munosuppression have permitted the use of liver

transplantation in the management of liver disease. De-
spite resourceful use of donor livers through split liver
transplantation and living related donors, patients’ needs
are not being met. Advances are also being made to try
and provide genetically engineered xenografts for trans-
plantation; however, this approach is still experimental.
Because of the persistent donor shortage, several cell-
based therapies for liver disease have been proposed;
namely, extracorporeal bioartificial liver devices, cell
transplantation, and tissue-engineered constructs. Despite
their differences, these therapies share a requirement for
adequate cell supply and stability of liver-specific func-
tions. Below, we review both surgical organ-based ap-
proaches as well as the current state-of-the-art in cell-
based approaches in this context. Although some

extracorporeal cell-based support devices are already in
clinical trials, the efficacy of engineered cell therapies in
the management of liver disease can be improved further
by incorporating strategies for maximizing hepatocyte
function. To apply such strategies, lessons must be drawn
from classic liver biology as well as the experience of
transplant medicine in supporting liver failure patients.

SURGICAL APPROACHES

In the 1960s, individuals with liver disease had a poor
prognosis and few options for effective treatment. Today,
even with a better understanding of the etiology of liver
disease, 1 in every 10 individuals in the United States is
or has been diagnosed with liver or biliary disease. In
particular, hepatitis C virus is a widespread public health
problem. Worldwide, approximately 170 million people
are infected with the hepatitis C virus (HCV), and each

Department of Bioengineering and Department of Medicine, University of California at San Diego, La Jolla, California.



year 8000 to 10,000 deaths result from HCV complica-
tions in the United States alone.1 Despite medical ad-
vances, few liver diseases are curable and the standard
treatment for liver decompensation is whole organ or-
thotopic transplantation. Below, we survey a range of
strategies for liver transplantation using cadaveric
donors, split liver techniques, living related donors, and
xenogeneic sources.

Cadaveric transplantation

Starzl and colleagues performed the first human liver
transplantations in 1963.2 Until the application of cy-
closporine for immunosuppression in the late 1970s, the
long-term survival of transplant recipients was low. Be-
cause of continued improvements in surgical techniques,
organ preservation, and immunosuppression, 1-year sur-
vival rates are currently 85–90%. The most common in-
dications for liver transplantation are chronic hepatitis,
alcoholic liver disease, and cirrhosis. The standard im-
munosuppressive therapy for transplant recipients con-
sists of tacrolimus plus corticosteroids. In 1999, of the
14,707 individuals on the waiting list, 4498 received
transplants and 1709 died while waiting.3 As of Febru-
ary 2002, 18,434 people are waiting for a liver trans-
plantation. The increasing disparity between the number
of patients awaiting transplantation and the number of
available organs is a key factor motivating the develop-
ment of novel therapies for liver disease.

Split liver transplantation

In efforts to more effectively distribute donated or-
gans, surgeons have developed techniques to use a sin-
gle liver in two recipients. Split liver procedures origi-
nated with reduced-size transplantation, in which a child
would receive only the right lobe of a cadaveric liver. It
soon became evident that the larger left lobe could be
successfully grafted into adults, rather than discarded.
Reports indicate that the success of split liver transplan-
tation is close to that of whole organ transplantation.4

The general acceptance of split liver transplantation rep-
resents an important advancement in the management
and distribution of limited cadaveric organs. Neverthe-
less, split liver operations are not performed everywhere
and may be complicated by anatomical variation or the
availability of recipients meeting specified criteria.

Living donor transplantation

As with cadaveric split liver transplantation, living
donor liver transplants were first performed in children
in 1988.5 Typically, children requiring a transplant may
receive the left lobe from an adult, with little risk to the
donor.6 A few years after this success, adult-to-adult liv-
ing donor transplants were successfully performed, us-
ing the right lobe.7 However, right hepatic lobectomy is
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surgically complex and presents a greater risk to the
donor.8 Although split liver procedures with both cadav-
ers and living donors expand the options available to
physicians and patients, liver transplantation is unlikely
to meet the demand for treatment and alternative thera-
pies must be explored.

Xenotransplantation

The earliest reports of hepatic xenografts came in 1993,
with baboon liver transplantation being utilized for sup-
port of fulminant hepatic failure.9 In more recent years, the
pig has been identified as an optimal organ source because
of comparable liver size and unlimited source. The major
problems with xenotransplantation are immune rejection
and risk of xenozoonosis by infectious agents such as
porcine endogenous retrovirus (PERV). Although many
propose that infectious risk is minimal, in vitro studies have
shown that PERV can infect human cells.10 After initially
halting clinical trials with pig tissues in October 1997, the
Food and Drug Administration (FDA) has since permitted
several trials to resume. Nonetheless, xenotransplantation
guidelines published by the FDA emphasize the infectious
risk of xenotransplantation.11

Early immune rejection of xenografts is due to the so-
called hyperacute rejection response. Preexisting antibod-
ies to carbohydrate epitopes on pig endothelium exist at
high titers in humans, likely because of antigen stimulation
by natural flora. Thus, complement-mediated damage of
xenografts rapidly causes deendothelialization, blood ves-
sel occlusion, and graft failure. To overcome this limita-
tion, some investigators are breeding transgenic pigs with
a modified endothelial surface. Proposed approaches mod-
ify the complement response by expression of decay-ac-
celerating factor (DAF)12 or human complement-inhibitory
protein13,14 or alter the expression of galactose
[Gal(a1–3)Gal] on the cell surface.15,16 Despite progress
toward mitigating the hyperacute rejection response, the
liver poses a unique challenge for xenograft organs: the pro-
duction of a large amount of xenogeneic protein as part of
normal hepatocyte function. Strategies for addressing the
subsequent acute and chronic phases of immune rejection
would incorporate traditional immunosuppressants coupled
with attempts to induce “tolerance.”

While liver transplantation continues to evolve as an
effective treatment for liver disease, there is clearly a role,
even a need, for the development of novel therapies.
Many of these approaches are in experimental stages and
can take valuable lessons from the field of transplanta-
tion medicine.

CELL-BASED APPROACHES

In response to the increasing incidence of liver disease
and the relative shortage of donor organs, many investi-
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gators have developed cellular therapies using isolated
hepatocytes. Such approaches must consider both the
source of hepatocytes and crucial stabilization of liver-
specific function. Cell-based therapies that are reviewed
can be generally categorized as extracorporeal devices,
cell transplantation, and tissue-engineered constructs.

Cell sourcing

The choice of cell type in any cellular therapy is of
paramount importance. Unfortunately, the full comple-
ment of cellular functions required to replace the liver
and positively affect clinical outcomes has not been de-
termined. For example, the mediators of hepatic en-
cephalopathy resulting from liver decompensation are not
fully understood although many theories, such as accu-
mulation of ammonia,17 benzodiazapine,18 or gut-derived
neurotransmitters,19 have been proposed. Hence, func-
tionality of cellular devices is determined by “surrogate”
markers of each class of liver-specific functions includ-
ing synthetic functions, metabolic functions, detoxifica-
tion (phase I and II pathways), and biliary excretion. The
implicit assumption is that hepatocytes capable of a wide
array of known functions will also express those unmea-
sured (or unknown) functions that are central to their
metabolic role. Tissue-engineering applications may now
consider sources other than primary cells as new cell lines
are developed and stem cell lineages are elucidated. Table
1 outlines some of the important issues concerning the
use of various cell sources.

Primary hepatocytes are the most common cellular
component in current engineered therapies. Most devices
undergoing clinical evaluation use porcine hepatocytes,
which are readily available but, compared with rodent
models, are poorly characterized in vitro.20 Whereas
some functions such as albumin secretion may be stable,
others such as cytochrome P-450 decline under standard
culture conditions.21,22 In general, primary hepatocytes
require specific microenvironmental cues to maintain the
hepatic phenotype in vitro, and, as discussed in the fol-

ENGINEERING FUTURE LIVER THERAPIES

lowing section, continuing investigation of culture con-
ditions is likely to improve the stability of primary
porcine hepatocytes in vitro as has been the case for ro-
dent hepatocytes.

Primary human cells are a preferred source for cellu-
lar therapies, but like whole organs, they are in limited
supply. Thus far, they have been used in an extracorpo-
real device23 as well as for hepatocyte transplanta-
tion.24,25 Case reports of growth potential of hepatocytes
from pediatric patients exist and advancement in tech-
niques to cryopreserve human hepatocytes will extend
their utility.26,27 Further in vitro characterization of hu-
man hepatocytes will provide key information affecting
the development of improved cell-based therapies.

The development of highly functional hepatocyte cell
lines for use in cellular therapies is an obvious strategy
to overcome the growth limitations of primary cells. A
common approach to immortalizing hepatocytes is retro-
viral transduction of the simian virus 40 tumor antigen
gene (SV40 Tag) whose gene product binds to cell cycle
regulator proteins Rb and p53.28–30 Cell lines have also
resulted from spontaneous immortalization of hepato-
cytes in collagen gel sandwich cultures or cocultures.31

A third type of hepatic cell line is derived from liver tu-
mors, as in the case of HepG2.29,32

All these cell lines are growth competent but must be
evaluated on the basis of liver-specific function and
safety. Immortalized hepatocytes typically underperform
primary cells and may not respond to important physio-
logic cues.33,34 The primary safety concern with the use
of cell lines is the transmission of oncogenic factors to
the host, especially with implanted cells. Efforts to im-
prove the safety of immortalized cells has resulted in the
use of temperature-sensitive SV40 Tag,35 Cre–loxP-me-
diated oncogene excision,36 and integration of suicide
genes such as herpes simples virus thymidine kinase
(HSV-tk).37 In the case of tumor-derived or sponta-
neously immortalized lines, limiting patient exposure to
cells and preventing tumorgenesis may prove more dif-
ficult.
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TABLE 1. CELL SOURCES FOR LIVER THERAPIES

Cell source Critical issues

Primary Sourcing, expansion, safety (PERV),
Human, xenogeneic phenotypic stability, immunogenicity

Immortalized Safety (suicide genes, tumorigenicity),
SV40, telomerase, tumor-derived, efficacy, genotypic instability
spontaneously immortalized

Stem cells Sourcing, differentiation,
Liver progenitor, embryonic, phenotypic instability,
transdifferentiation (HSC, pancreas) safety (tumorigenicity), immunogenicity

Abbreviations: HSC, Hematopoietic stem cells; PERV, porcine endogenous retrovirus; SV40,
simian virus 40.



In addition to primary cells and cell lines, stem cells
are being considered for use in cellular therapies for liver
disease. Stem cells are self-renewing cells that have the
potential to differentiate into specialized cell types. The
study of liver stem cell biology is rapidly evolving; there-
fore, we have constructed the stem cell map in Fig. 1 to
summarize the current literature. Potential stem cell
sources for use in cell-based therapies are embryonic
stem cells, adult liver progenitors, and transdifferentiated
nonhepatic cells.38–40 Although embryonic stem cells
may ultimately provide a cell source, differentiation
along the early hepatocyte lineage in vitro has been re-
ported only in murine embryonic stem cells.41 The oval
cell is a “facultative,” bipotential stem cell that emerges
in the setting of hepatic injury coupled with the inabil-
ity of the adult hepatocyte to undergo repair.42 However,
despite the fact that oval cells can be propagated in vitro,
some transplantation studies indicate that they have less
repopulation potential than mature hepatocytes.43 “Pro-
genitor” cells have also been isolated from adult and 
fetal tissues that have not been subject to an oval cell
protocol.44–47 Certain progenitor cells have been charac-
terized as multipotent hepatic stem cells with self-re-
newal capability in vitro.48 In addition, it appears that
hematopoietic stem cells can generate hepatocytes di-
rectly as well as through an oval cell intermediate, de-
pending on the mode of injury and the model system.
This has been shown in rodent models and confirmed in
humans by a retrospective study of recipients of bone
marrow and liver transplantation.49–52 Although it is not
clear which stem cell source would be optimal, stem cells
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that can proliferate yet retain the ability to differentiate
into hepatocytes would provide an ideal source for engi-
neered cellular therapies.

Each of the cell sources currently under evaluation,
that is, primary cells, cell lines, and stem cells, has in-
herent advantages and limitations. Independent of the
source, mature hepatocytes in cellular therapies will
likely require long-term functional stability to prove ef-
fective.

Phenotypic stability

The success of cellular therapies ultimately depends
on the stability of the hepatocyte phenotype and its reg-
ulation by microenvironmental cues. Primary hepatocytes
are anchorage dependent and notoriously difficult to
maintain in vitro. Freshly isolated cells rapidly lose adult
liver morphology and differentiated functions when cul-
tured in monolayers or suspension. For years, investiga-
tors have developed culture models based on features of
liver architecture to recapitulate the complex hepatocyte
microenvironment seen in Fig. 2. These features include
extracellular matrix as found in the space of Disse,
physicochemical stimuli imposed by sinusoidal blood
flow, and cell–cell interactions present in the hepatic
cord. Extracellular matrix (ECM) modulation has in-
cluded both variations in composition and topology.53–58

Matrigel, a tumor-derived basement membrane-like gel,
is an example of a scaffold containing varied ECM com-
position that has been used for hepatocyte stabilization.
However, hepatocytes undergo variable aggregation on
Matrigel, making it difficult to incorporate in a cell-based
therapy. Sandwich culture mimicks the environment seen
by hepatocytes in vivo by entrapping cells in between two
layers of collagen gel.59 However, such methods intro-
duce additional transport barriers and are difficult to scale
up to therapeutic levels.60,61

Modifications of culture media, including the addition
of low concentrations of hormones, corticosteroids, cy-
tokines, vitamins, or amino acids, are known to help sta-
bilize hepatocyte morphology, survival, and liver-spe-
cific functions. Specifically, serum-free formulations
containing epidermal growth factor (EGF), hepatic
growth factor (HGF), and nicotinamide have been shown
to maintain hepatocyte function and even induce prolif-
eration in vitro.47,62–64 In addition, gradients of hormones
and oxygen are important modulators of hepatocyte func-
tion in vivo and may prove useful in designing cellular
therapies.65,66

Finally, cell–cell interactions, both homotypic (hepa-
tocyte–hepatocyte) and heterotypic (hepatocyte–non-
parenchymal cell), have been shown to improve viabil-
ity and function. Restoration of hepatocyte interactions
as in spheroidal aggregates promotes formation of bile
canaliculi, gap junctions, tight junctions, and E-cadherins
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FIG. 1. Putative stem cell map of the liver. Normally, hepa-
tocytes and biliary cells have the ability to replicate. Oval or
progenitor cells are thought to be facultative stem cells. Pan-
creatic ductal cells can transdifferentiate into oval cells and he-
patocytes. Hematopoietic stem cells may differentiate directly
into hepatocytes and cholangiocytes or into oval cells, depend-
ing on the animal model.



and stabilizes function.67–69 The heterotypic interactions
in hepatocyte–nonparenchymal cocultures are thought to
present a highly conserved signal that greatly augments
liver-specific functions.70–72 Cell patterning methods
have been used to study the “co-culture” effect by tightly
controlling the amount of cell–cell interaction to identify
specific signaling pathways.73 Whatever the nature of the
hepatocyte therapy, the issue of phenotypic stability must
be addressed. Elucidation of specific molecular mecha-
nisms that stabilize hepatocyte function would have
broad impact in this field.

Extracorporeal devices

Extracorporeal support for patients suffering from liver
failure has been attempted since before the 1960s (for re-
view, see Allen et al.61 and Strain and Neuberger74). Var-
ious nonbiological approaches such as hemodialysis or
hemoperfusion over charcoal have met with limited suc-
cess, presumably because the synthetic and metabolic
functions of the liver are inadequately replaced in these
systems.75 Conversely, biological approaches such as
hollow fiber devices, flat plate systems, perfusion beds,
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and suspension reactors (Fig. 3) have shown encourag-
ing results but have been difficult to implement in the
clinical setting.

The most common bioartificial liver device design in-
corporates hepatocytes in hollow fiber cartridges bor-
rowed from hemodialysis. In attempts to improve the he-
patocyte microenvironment, investigators have used
microcarriers76; gel entrapment, both intraluminally77

and in the extracapillary space57; multicompartment in-
terwoven fibers78; and multicoaxial configurations.79

Hollow fiber membranes provide a scaffold for cell at-
tachment and immunoisolation, and are well character-
ized in a clinical setting, but may not provide adequate
nutrient transport or the proper environmental cues for
long-term hepatocyte stabilization. Flat plate or mono-
layer bioreactors have been proposed that offer better
control of hepatocyte microenvironment, but would be
difficult to scale up.60,80 Many designs use perfused beds
or scaffolds to promote three-dimensional architecture
and minimize transport barriers. However, it may be dif-
ficult to provide uniform perfusion of the packing matrix
and cells can be exposed to damaging shear forces.81–83

Finally, encapsulated suspended cells or spheroid aggre-
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FIG. 2. Microarchitecture of liver lobule. The hepatocyte microenvironment is precisely defined with regard to cell–cell in-
teractions, cell–matrix interactions, and biochemical stimuli (e.g., hormones). Each of these features has been utilized in vitro to
stabilize the isolated primary hepatocyte phenotype. (Reproduced with permission from J. Daugherty.)

FIG. 3. Schematics of proposed extracorporeal liver support devices. Many designs have been proposed, but most fall under
these four general classifications. Hollow fiber devices are the most common, but innovations in engineering, biomaterials, and
fabrication have contributed to many novel perfusion- and scaffold-based systems.



gates have been incorporated in perfusion systems that
would be simple to scale up, but are limited in their abil-
ity to stabilize cells.84–86

A successful extracorporeal bioartificial liver design
will include effective bidirectional mass transport, a sta-
ble cellular microenvironment, and simple scale-up. Al-
though many devices include a combination of convec-
tive and diffusion transport phenomena, mass transfer
limitations of key nutrients to and from the cellular com-
partment are primarily due to diffusion resistance. Bar-
riers to diffusive transport include membranes, collagen
gels, and nonviable cells. Membranes have been used
with a wide range of molecular mass cutoffs, from 20 to
200 kDa, but presently most designs specify a range be-
tween 100 and 150 kDa. As discussed in the previous
section, hepatocytes require a specific microenvironment
to maintain liver-specific function, something absent
from many device designs. Much can be drawn from cul-
ture models that stabilize hepatocytes with cell–cell in-
teractions, cell–matrix interactions, and chemical cues.
Finally, to be clinically useful, extracorporeal devices
must scale to provide efficacy. Some challenges involved
in scaling up experimental reactors include maintaining
a uniform microenvironment, minimizing dead volume,
providing adequate cell number, and ensuring homoge-
neous flow distribution. In addition, establishing stan-
dard protocols for evaluating benefit to the patient and
prolonging cell survival will lead to improvements of ex-
isting devices, and of the implantable approaches that
will soon follow.

Cell transplantation

Cell transplantation is typically performed by intra-
venous or peritoneal administration of hepatocytes in sus-
pension. This mode of cellular therapy exploits a key ad-
vantage of the in vivo hepatic microenvironment: adult
hepatocytes engrafted in the liver or spleen can prolifer-
ate extensively and reconstitute liver function. Indeed, in
a mouse model of cell transplantation, a single hepato-
cyte was calculated to have the potential to go through
34 population doublings, or give rise to 1.7 3 1010

cells.87,88

A critical element for effective regeneration is a “he-
patotrophic” environment as well as available sites for
cell growth. In animals, this stimulation is typically gen-
erated by partial hepatectomy, portocaval shunting, trans-
genic injury, or administration of hepatotoxins before cell
transplantation. Delivery of the isolated cells has been
attempted by injection into peripheral veins, the portal
vein, or the splenic artery as well as by intraperitoneal
and intrasplenic injection. The inefficient engraftment of
hepatocytes (,10%) and limited cell survival remain ma-
jor limitations of this technique and strategies to improve
adhesion and translocation of hepatocytes into the exist-
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ing liver parenchyma will undoubtedly play an important
role in the future.89 Early studies demonstrated problems
with linking animal survival to function of transplanted
cells—either due to unexpectedly high animal survival
for relatively few cells, or beneficial effects from nonvi-
able hepatocytes or nonhepatocytes.75,90 Transplanted
hepatocytes also require time to engraft and grow (dou-
bling time in mice, 28 h)91 and this may limit the utility
of the procedure for certain clinical indications. An in-
adequate hepatocyte supply is another barrier to wide-
spread use of this procedure. For example, metabolic de-
fects have been replaced with relatively little liver mass
(2–5%) as compared with the requirements for support
of the acutely failing liver (10–30%). The normal adult
liver contains approximately 1011 hepatocytes; therefore,
even 2% of hepatocytes would require 2 billion engrafted
cells.

Currently, a limited supply of allogeneic human hepato-
cytes is obtained by collagenase perfusion of organs
deemed inappropriate for transplantation92; however, a
number of other sources under development were discussed
earlier. Studies have highlighted the possibility that the lim-
ited life span of adult hepatocytes may contribute to the de-
velopment of cirrhosis.51 Therefore, telomerase expression
in differentiated human hepatocytes may extend the life
span of transplanted cells in vivo. Cell transplantation
clearly holds promise as a therapy for a subset of clinical
hepatic syndromes, but faces the same challenges of cell
sourcing, adequate function, and safety as other in vivo ap-
proaches, such as tissue-engineered constructs.

Tissue-engineered constructs

Tissue engineering of implantable cellular constructs
is another emerging cellular therapy for liver disease.
This approach remains largely experimental and must
overcome a number of significant hurdles before it will
become a viable clinical modality. The premise of this
approach is similar to cell transplantation in that hepato-
cytes are transplanted to perform liver functions; how-
ever, hepatocytes, known to be anchorage dependent, are
immobilized on scaffolds, encapsulated in aggregates, or
cultured ex vivo to form liver “organoids” and surgically
transplanted. Hepatocytes have been implanted in many
sites including the peritoneal cavity and mesentery, as
well as the spleen, liver, pancreas, and subcutaneous tis-
sues.93,94 Proposed constructs have utilized scaffolds of
various chemical composition of both synthetic and bio-
logic composition. Synthetic scaffolds include biodegrad-
able polyesters and polysaccharides.95–102 Biologic scaf-
folds have included hyaluronic acid, collagen, and more
complex biomatrix.103–107 Both scaffold architecture and
chemistry clearly play a role in hepatocyte survival, mor-
phogenesis, and function.70,108,109 Many putatively three-
dimensional scaffold architectures (e.g., microcarriers)
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are effectively two-dimensional, flat surfaces from the
hepatocyte perspective; therefore, functionality of im-
plantable cellular constructs may be improved by incor-
porating cell culture strategies that promote three-di-
mensional conformations and maintain hepatocyte
polarity.

Alternatively, hepatocytes have been encapsulated to
promote cell aggregation and liver-specific function as
well as provide immunoisolation. Encapsulation schemes
have included alginate, alginate–polylysine compos-
ites,110–113 and fibers.114 Spheroidal hepatocyte aggre-
gates, heterospheroids of hepatocytes and nonparenchy-
mal cells, and cocultures formed on in vitro templates
have been proposed as tissue organoids for implanta-
tion.67–70,115–118 Encapsulation strategies for many dif-
ferent cell types, including highly metabolic hepatocytes
(Vmax < 0.4 nmol of O2 per second per 106 rat cells), face
a classic dilemma between restricting transport of im-
munomodulators while maximizing transport of nutrients
and desired cell products.

Despite advances in key aspects of hepatocyte culture
and understanding morphogenesis in vitro, tissue engi-
neering of the liver faces significant challenges in the fu-
ture.119 It shares many of the limitations of cell trans-
plantation (cell sourcing, immune rejection, and
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long-term viability) with additional issues introduced by
transport limitations due to lack of hepatic vasculature,
the instability of the hepatocyte phenotype when isolated
from the hepatic microenvironment, and the ability for
tissue structures to reorganize over time. Accordingly,
fundamental research in tissue engineering has been in
the metabolic requirements of hepatocytes during seed-
ing and in early stages of implantation,101,120–122 design
of biomaterials to improve angiogenesis,100,123,124 effects
of hepatocyte microenvironment on phenotypic stability
(e.g., soluble signals, cell–substrate interactions, and
cell–cell interactions), and morphogenesis of hepatocyte
structures in pure cultures and cocultures with non-
parenchymal cells.70,73,108 Finally, none of the current
proposed constructs incorporate in their designs excre-
tory function corresponding to the biliary system, al-
though studies indicate that biliary morphogenesis can be
achieved in vitro.125

In the future, advances in developmental biology will
likely complement “brute force” strategies to replicate the
exquisite microarchitecture of the liver. For example, sol-
uble (e.g., fibroblast growth factor) and unidentified in-
soluble factors have been identified in differentiation of
the endoderm along the hepatic lineage126–128 as well as
in branching morphogenesis of the primitive kidney.129
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TABLE 2. CLINICAL STATUS OF EXTRACORPOREAL SUPPORT DEVICES

No. of
Company patients Device Phase Comments

Vitagen, La Jolla, CA 25 Sussmana I/II; C3A cell line, continuous treatment up to 10
(ELAD) multicenter days, ultrafiltrate perfusion, 150–300 

mL/min, heparin, 4 replaceable cartridges,
cell mass: 4 3 200 gb,c

Circe Biomedical, 171 Demetrioud II/III; Cryopreserved porcine, treatment 3–6 h for
Lexington, MA multicenter 1–5 days, 400 mL/min, citrate, charcoal
(HepatAssist) column, centrifugal plasmapheresis, cell

mass: 50 ge–g

Excorp Medical, 5 Patzerh I; one Primary porcine, treatment 6–30 h, whole
Oakdale, MN center blood perfusion, heparin anticoagulation,
(BLSS) cell mass: 100 g

Charite Virchow 8 Gerlachi I/II; Primary porcine, continuous treatment up to 3
Clinic–Berlin multicenter days, filtration plasmapheresis, 100 mL/min,
(MELS) heparin anticoagulation, cell mass: 500 g

Abbreviations: BLSS, Bioartificial liver support system; ELAD, extracorporeal liver assist device; MELS, modular extracorpo-
real liver system.

aSee Sussman et al.132

bSee Millis et al.133

cSee Ellis et al.134

dSee Rozga et al.76

eSee Demetriou.20

fSee Stevens et al.135

gSee Mullon and Pitkin.136

hSee Mazariegos et al.137

iSee Gerlach et al.78



As subsequent signaling molecules are identified, these
may be incorporated into tissue-engineering strategies to
harness the hepatocyte as an active component of cell-
based therapies.

CURRENT CLINICAL STATUS OF
ENGINEERED THERAPIES

Extracorporeal devices are first on the track to clini-
cal application, although their efficacy has yet to be fully
determined. Experimental devices using suspended pri-
mary hepatocytes were among the first to be used with
human patients in the late 1980s, but have met with lim-
ited success.130,131 Presently, several hollow fiber de-
vices are under evaluation in clinical trials (Table
220,76,78,132–137). The most extensively tested device, the
HepatAssist System from Circe Biomedical (Lexington,
MA), completed phase II/III trials with patients. Prelim-
inary results show improvement in 30-day survival to
71% for treated groups, compared with 62% for those re-
ceiving standard care (n 5 171).135 Although an exami-
nation of study subpopulations and secondary end points
shows moderate benefit of the device, a conclusive mea-
sure of efficacy is confounded by factors such as trans-
plantation, disease etiology, and stage of encephalopa-
thy. Critical evaluation of the complete results of the
HepatAssist trial should provide valuable insight for fu-
ture large-scale clinical studies. Careful consideration
needs to be given to treatment indications, clinical end
points, and device regulation in clinical trial design so
that clear evidence of treatment efficacy may be estab-
lished. Ongoing clinical experiences with extracorporeal
support will likely play a key role in the improvement of
next-generation devices.

Cell transplantation and implantable constructs have
thus far seen limited use clinically. Although cell trans-
plantation studies are ongoing in many animal mod-
els,40,94 only a few investigators have used them in hu-
mans to compensate for acute liver failure.24,25 To date,
there has been no report of the use of a tissue-engineered
construct to treat liver disease in humans. As discussed,
hepatocyte transplantation and tissue constructs face is-
sues of optimizing transplantation site, nutrient supply,
cell viability, and grafting efficiency before clinical
safety and efficacy can be evaluated.

CONCLUSION

Since the 1980s, the standard treatment for liver fail-
ure has been whole organ transplantation. Improvements
in surgery have allowed split liver and liver-related donor
procedures to partially alleviate the shortage in organ
supply. However, cell-based therapies hold promise to
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provide an important adjunctive treatment (i.e., bridge to
liver transplantation) or eventual curative therapy in cases
of metabolic defects.

Current cell-based approaches will rely on a variety of
cell sources, whether primary or stem cells, which will
ultimately interact with the microenvironment en route
to providing key liver-specific functions. A fundamental
understanding of the cues that promote phenotypic sta-
bility and tissue morphogenesis will undoubtedly con-
tribute to the next generation of extracorporeal devices,
cell transplantation therapies, and tissue-engineered con-
structs. Furthermore, strategies to harness and regulate
host liver regeneration could even offer the potential to
reverse chronic liver fibrosis and cirrhosis, currently
thought to be irreversible.

In addition, immunological issues will be an important
consideration for cell-based therapies; therefore, contri-
butions from transplantation immunology that aim to pro-
mote graft tolerance are of great interest.138 Finally, de-
velopment of predictive animal models to evaluate liver
therapies will offer vital preclinical assessment of new
therapies as they emerge.
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