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Peptide-based urinary monitoring of fibrotic 
nonalcoholic steatohepatitis by mass-barcoded 
activity-based sensors
Sophie C. Cazanave1*, Andrew D. Warren1†, Maciej Pacula1†, Fayçal Touti1, Anna Zagorska2, 
Nil Gural3, Eric K. Huang1, Sarah Sherman, Mehar Cheema1, Sabrina Ibarra1, Jamie Bates2, 
Andrew N. Billin2, John T. Liles2, Grant R. Budas2, David G. Breckenridge2, Dina Tiniakos4,5, 
Vlad Ratziu6, Ann K. Daly4,5, Olivier Govaere4,5, Quentin M. Anstee4,5, Louis Gelrud7, Jay Luther8, 
Raymond T. Chung8, Kathleen E. Corey8, Wendy Winckler1, Sangeeta Bhatia3, Gabriel A. Kwong1,9*

Noninvasive detection of nonalcoholic steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver 
disease, promises to improve patient screening, accelerate drug trials, and reduce health care costs. On the basis 
of protease dysregulation of the biological pathways of fibrotic NASH, we developed the Glympse Bio Test System 
(GBTS) for multiplexed quantification of liver protease activity. GBTS-NASH comprises a mixture of 19 mass-​
barcoded PEGylated peptides that is administered intravenously and senses liver protease activity by releasing 
mass-barcoded reporters into urine for analysis by mass spectrometry. To identify a protease signature of NASH, 
transcriptomic analysis of 355 human liver biopsies identified a 13-protease panel that discriminated clinically 
relevant NASH ≥F2 fibrosis from F0-F1 with high classification accuracy across two independent patient datasets. 
We screened 159 candidate substrates to identify a panel of 19 peptides that exhibited high activity for our 
13-protease panel. In the choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) mouse model, binary 
classifiers trained on urine samples discriminated fibrotic NASH from simple steatosis and healthy controls across 
a range of nondisease conditions and indicated disease regression upon diet change [area under receiver oper-
ating characteristics (AUROCs) > 0.97]. Using a hepatoprotective triple combination treatment (FXR agonist, ACC 
and ASK1 inhibitors) in a rat model of NASH, urinary classification distinguished F0-F1 from ≥F2 animals and indi-
cated therapeutic response as early as 1 week on treatment (AUROCs >0.91). Our results support GBTS-NASH to 
diagnose fibrotic NASH via an infusion of peptides, monitor changes in disease severity, and indicate early treat-
ment response.

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent 
chronic liver disease worldwide (1) and has been dubbed the silent 
epidemic due to the lack of symptoms until liver disease has 
progressed to cirrhosis with hepatic decompensation. Although 
there is substantial interpatient variation in the natural history of 
disease and long-term outcome, the presence of nonalcoholic 
steatohepatitis (NASH)—the progressive form of NAFLD charac-
terized by steatosis accompanied with inflammation and hepatocyte 
ballooning—may lead to hepatic fibrogenesis and ultimately to 
life-threatening conditions including cirrhosis, liver cancer, and 

organ failure (1, 2). Currently, only weight reduction and lifestyle 
intervention are regularly used for treatment, and despite investiga-
tions involving more than 70 drugs in the development pipeline (1), 
none have been approved to date. The lack of accurate noninvasive 
biomarkers means that liver biopsy is used to diagnose NASH and 
select patients in the majority of NASH clinical trials. Liver biopsy 
is an invasive procedure that carries small risk of complications (3) 
and is subject to sampling heterogeneity and interobserver inter-
pretation that can lead to errors in diagnosis and staging (4, 5). In 
NASH drug trials, the requirement for histological end points by 
serial biopsies continues to be a major barrier by influencing their 
size, length, and cost (6, 7). Moreover, liver biopsies are unsuitable 
for screening at a population level, which leaves many patients who 
are otherwise asymptomatic undiagnosed until later in the disease 
process. For these reasons, noninvasive methods are needed to 
diagnose liver disease and indicate patient response to drugs earlier 
during treatment.

Numerous approaches are being evaluated for diagnostic, 
monitoring, pharmacodynamic, and prognostic applications across 
different contexts of use (8). Magnetic resonance (MR) imaging–
estimated proton density fat fraction is a quantitative imaging–
based biomarker of hepatic steatosis that is used in clinical trials to 
report on response to drugs that have an antisteatotic mechanism of 
action (9). To diagnose liver fibrosis, FibroScan or MR elastography 
measures the propagation velocity of shear waves to quantify liver 
stiffness as a biomarker of advanced fibrosis (F3-F4), but its use 
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may be limited because of body habitus in some patients (10). 
Serum-based protein assays such as those for apoptosis [cytokeratin 
(CK) 18 fragments (11)] and fibrogenesis, either as single biomarkers 
or as part of a multiparameter scoring system (for example, collagen 
neoepitope PRO-C3, FibroTest, and enhanced liver fibrosis or 
ELF), have been proposed to improve disease or advanced fibrosis 
detection (12, 13); however, they lack accuracy at discerning patients 
with clinically relevant ≥F2 NASH fibrosis from those with F0-F1, 
leaving the largest part of the upcoming drug-treatable patients 
undiagnosed (14). Highlighting the pressing need for noninvasive 
diagnostics, several major international initiatives involving academic 
and pharmaceutical partners are underway to validate and develop 
biomarkers that diagnose the severity of NAFLD/NASH and moni-
tor changes in disease severity.

We developed the Glympse Bio Test System (GBTS)–NASH as 
an injectable 19-plex library of mass-barcoded PEGylated peptides 
to measure protease dysregulation in NASH livers as activity-based 
biomarkers. Proteases such as matrix metalloproteinases (MMPs) 
and cathepsins are involved in the key pathways of progressive NASH 
including lipogenesis, apoptosis, inflammation (15–19), and fibrosis 
(20–25). After intravenous administration, GBTS-NASH is cleaved 
by liver-associated proteases, releasing mass-barcoded reporters 
that then renally filter into urine for quantification by tandem mass 
spectrometry (MS/MS). Compared to endogenous circulating 
biomarkers, synthetic biomarker concentrations in urine are ampli-
fied by protease turnover of peptides and renal enrichment of 
reporters, which may substantially improve diagnostic sensitivity 
compared to serum biomarkers (26–29). Moreover, the use of a 
19-plex library of probes allows capture of high-dimensional data 
to train diagnostic classifiers to improve specificity compared to 
single biomarkers. We demonstrate GBTS-NASH in the key use 
cases of diagnosis in nutritional rodent models of NASH fibrosis, 
monitoring changes in disease regression by diet change, and 
pharmacodynamic response to a hepatoprotective triple treatment 
combination as early as 1 week on therapy.

RESULTS
Human transcriptome analysis identifies proteases 
dysregulated in fibrotic NASH
We first quantified the breadth of protease dysregulation by tran-
scriptomic analysis of 355 RNA-later, frozen, or formalin-fixed, 
paraffin-embedded (FFPE)–preserved liver biopsy samples (n = 76 
normal, n = 90 NAFL, and n = 189 NASH F0 to F4) from the Mas-
sachusetts General Hospital (MGH) and St. Mary’s weight loss sur-
gery clinic (STM) (Fig.  1A and table S1). Of the ~550 proteases 
encoded by the genome, we designed a custom NanoString panel to 
quantify all 229 secreted and membrane-bound endoproteases as 
well as 570 nonprotease genes linked to lipogenic, inflammatory, 
and fibrotic pathways (30). Exoproteases were excluded because 
our peptide sensors are chemically protected at the C and N termini. 
Unsupervised hierarchical clustering of protease gene expression 
stratified the 355 normal and NAFLD samples into two distinct clusters, 
A and B (fig. S1). Cluster A was characterized by more advanced 
fibrosis [n = 47 with moderate to severe fibrosis (≥F2) and n = 113 
with no or mild fibrosis (F0-F1) versus n = 6 ≥F2 and n = 189 F0-
F1 in cluster B, Fisher’s exact test, ****P = 1.8 × 10−12] and a higher 
number of NASH diagnoses (64% versus 44%, Fisher’s exact test, 
****P = 1.7 × 10−4). Within cluster A, NASH ≥F2 separated as a subset 

(S1) from normal, NAFL, and NASH F0-F1 with minimum overlap 
(fig. S1). Integrated pathway cluster analysis of differentially ex-
pressed nonprotease genes confirmed that multiple metabolic, in-
flammatory, and extracellular matrix remodeling pathways were 
overrepresented in ≥F2 versus F0-F1 fibrosis (fig. S2).

To differentiate NASH by protease expression, we trained a 
regularized logistic regression classifier using all 229 protease counts 
as features and assessed its performance to distinguish NASH ≥F2 
from F0-F1 with 100 rounds of randomized 80% training, 20% testing 
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Fig. 1. Dysregulated protease expression classifies NASH ≥F2 from F0-F1 with 
high accuracy. (A) In silico identification of candidate proteases by analysis of liver 
RNA from MGH/STM human cohort including 76 normal individuals, 90 NAFL 
(steatosis), and 189 patients with NASH using a custom NanoString panel. Within 
the NASH cohort, the proportion of patients with stage 0, 1, 2, 3, and 4 NASH 
according to the CRN scoring system was n = 74 (39.2%), n = 62 (32.8%), n = 34 
(18.0%), n = 13 (6.9%), and n = 6 (3.2%), respectively. (B) AUROC for binary classifi-
cation of fibrosis stage ≥F2 vs. F0-F1 with a regularized logistic regression gene 
classifier trained with all 229 proteases (black) or a subset of 13 NASH proteases 
(green). (C) Differential expression of the 13 proteases in patients with NASH ≥F2 
vs. F0-F1 plotted as log2 fold change (***P ≤ 0.001). (D) Pearson correlation of the 
AUROCs of 206 overlapping proteases to predict ≥F2 versus F0-F1 between the 
MGH/STM and NCL cohorts (filled circles: *P ≤ 0.05 in either dataset, Bonferroni-
corrected). Thirteen-protease panel depicted as red circles. (E) AUROCs for binary 
classification of fibrosis stage ≥F2 versus F0-F1 by a 13-protease regularized logistic 
regression classifier trained on the MGH/STM cohort and validated with the inde-
pendent Newcastle cohort (green) or vice versa (black).
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(80/20) cross-validation. This binary cutoff was chosen because 
natural history studies and longitudinal monitoring by serial 
biopsies have highlighted NASH ≥F2 as associated with an increased 
risk of death and liver transplant (31) and as an important stage of 
clinical intervention (32). This 229-protease classifier distinguished 
≥F2 from F0-F1 NASH with an area under the receiver operating 
characteristic (AUROC) of 0.95 [95% confidence interval (CI) 0.91 
to 0.98] (Fig. 1B). We asked whether a subset of up-regulated proteases 
could distinguish patients with NASH ≥F2 by calculating AUROCs 
as a function of the top 1 to 32 significantly up-regulated proteases 
as ranked by analysis of variance (ANOVA) (n = 32, Bonferroni-
corrected ANOVA, *P ≤ 0.05) (fig. S3). We found that classification 
accuracy depended on protease counts up to ~12 to 15, after which 
AUROCs negligibly increased. We therefore down-selected 229 
proteases to a list of 13 that comprised four main families: metallo-
proteinases (MMP2, MMP7, MMP9, MMP14, and MMP19), 
cathepsins (CTSD and CTSK), granzymes (GZMA and GZMK), and 
other serine proteases (FAP, ST14, PLAU, and FURIN). A binary 
classifier trained on these 13 proteases accurately separating ≥F2 
from F0-F1 with an AUROC of 0.90 (95% CI 0.85 to 0.95) (Fig. 1B) 
was statistically equivalent to the 229-protease classifier (P = 0.08) 
and correctly assigned the histological category of 295 of 355 pa-
tients (specificity = 83.1%, sensitivity = 83.0%) (fig. S4). All 13 
proteases were significantly up-regulated in NASH ≥F2 compared 
to F0-F1 (***P ≤ 0.001, Bonferroni-corrected; Fig. 1C) with univariate 
AUROCs ranging from 0.70 to 0.80 (***P ≤ 0.001) (table S2).

As the MGH/STM patient samples were collected from a bariatric 
surgery clinic, potential differences in population distribution and 
clinical characteristics may bias protease selection. Therefore, we 
cross-validated our results with a natural history cohort of NAFLD 
(33 NAFL and 113 NASH) from Newcastle University (NCL, United 
Kingdom) and Hôpital Pitié Salpêtrière (France). NCL liver samples 
were previously quantified by a NanoString panel that contained 
206 overlapping proteases with our MGH/STM panel (33). Despite 
significant differences in clinical features including body mass index 
(BMI), age, alanine aminotransferase (ALT), and aspartate amino-
transferase (AST) (***P ≤ 0.001) (table S1), the performance of single 
proteases in distinguishing ≥F2 versus F0-F1 strongly correlated 
between the two cohorts (Pearson’s r2 = 0.72, P = 5.1 × 10−34; Fig. 1D). 
Moreover, a binary classifier trained on the same 13-protease panel 
accurately separated ≥F2 from F0-F1 with an AUROC of 0.85 (95% 
CI 0.79 to 0.91) with a sensitivity of 78.1% and a specificity of 79.7% 
(fig. S5). The ability to predict patients at stage ≥F2 did not depend 
on whether the classifier was trained on the MGH/STM and tested 
on the NCL cohort (AUROC = 0.86, 95% CI 0.80 to 0.91) or trained 
on the NCL and tested on the MGH/STM cohort (AUROC = 0.90, 
95% CI 0.85 to 0.94; Fig. 1E). Both were statistically equivalent to 
classifiers trained and tested on the same dataset (P = 0.49 to 0.54). 
As obesity and T2DM are prevalent in NASH populations (34), we 
examined potential confounding signals from comorbidities. We cal-
culated ≥F2 classifiers without retraining separately in obese ver-
sus nonobese or diabetic versus nondiabetic patients with NASH 
(table S3). In the MGH cohort, all patients were overweight (average 
BMI ~45) (table S1) and were pooled with the NCL cohort to allow for 
obese versus nonobese comparison. Across these two comorbid groups, 
AUROCs to predict ≥F2 were unchanged by obesity (MGH + NCL 
AUROC = 0.82 in obese versus AUROC = 0.85 in nonobese, P = 
0.74, nonsignificant) or diabetic status [MGH AUROC = 0.90 in 
type 2 diabetes mellitus (T2DM) versus AUROC = 0.90 in non-T2DM, 

P = 0.98; NCL AUROC = 0.91 in T2DM versus AUROC = 0.82 in 
non-T2DM, P = 0.16, all nonsignificant].

Last, we compared the performance of our protease classifier with 
other noninvasive tests. Fibrosis-4 (FIB-4) is recommended by the 
American Association for the Study of Liver Disease (35) for detecting 
advanced fibrosis. In the NCL cohort, the FIB-4 index underperformed 
our protease RNA classifier to classify NASH ≥F2 with an AUROC 
of 0.64 (95% CI 0.55 to 0.72, ****P ≤ 0.0001) (fig. S5). The sensitivity 
and specificity of FIB-4 for ≥F2 diagnosis were 65.3 and 54.3%, 
respectively, at a low cutoff value of 1.3, and of 11.9 and 98.6% at a 
high cutoff value of 2.67. Liver stiffness values by FibroScan for 
82 patients from the NCL cohort (19 NAFL and 63 NASH: 25 F0-F1, 
10 F2, 25 F3, and 3 F4), at a Youden cutoff value of 8.2 kPa (36), 
predicted ≥F2 (AUROC = 0.80, 95% CI 0.70 to 0.90, P = 0.12, non-
significant) with similar performance but with significantly lower 
sensitivity and specificity (73.7 and 56.8%, respectively) when com-
pared to our RNA  ≥F2 (AUROC  =  0.88, 95% CI 0.79 to 0.95, 
*P = 0.041). Together, these results indicated that transcript levels of a 
13-protease panel classify patients with NASH ≥F2 with high accu-
racy across two independent datasets.

Design of activity-based sensors to detect NASH proteases
GBTS-NASH probes are mass-barcoded, PEGylated peptides 
comprising an eight-arm 40-kDa poly(ethylene glycol) (PEG) core 
conjugated to protease substrates labeled with a mass barcode 
(Fig. 2A). PEG has a longstanding history of clinical safety for 
U.S. Food and Drug and Administration–approved drugs (37) and 
a branched eight-arm structure allows multivalent presentation of 
peptides and extends sensor half-life in circulation to increase 
distribution to the liver (38). The hydrodynamic diameter of 40-kDa 
eight-arm PEG (~10 nm) is larger than the glomerulus pore size 
(~4 to 5 nm) to prevent surface-conjugated peptides from filtering 
into urine before protease cleavage, with less than 0.5% of injected 
dose filtering into urine (28).

To identify peptide substrates, we synthesized a library of 
159 fluorogenic substrates ranging 4 to 12 amino acids in length 
flanked by a fluorophore (FAM) and quencher (CPQ2) using se-
quences from previously reported studies (29, 38). This library was 
assayed with recombinant proteases from our 13-member panel by 
quantifying increases in sample fluorescence over time (Fig. 2B). To 
facilitate down-selection from 159 candidate substrates, we applied 
t-distributed stochastic neighbor embedding (t-SNE) to compare 
substrate cleavage activities (Fig. 2C). t-SNE revealed three major 
groups: Cluster 1 substrates were preferentially cleaved by MMPs 
and cathepsins, cluster 2 by cathepsins, and cluster 3 by different 
families of serine proteases. From our library, we selected N01, N02, 
N03, N04, N05, N06, N07, and N08 from cluster 1; N09, N10, N11, 
N12, and N13 from cluster 2; and N14, N15, N16, N17, N18, and 
N19 from cluster 3 (Fig. 2D). To verify substrate cleavage after 
conjugation to eight-arm PEG, we tested three sequences (N03, 
N05, and N18) across a broad range of peptide concentrations (0.09 
to 6 M) and observed similar cleavage kinetics between free 
substrates and their PEGylated counterparts (Fig. 2B).

To allow detection by mass spectrometry, each GBTS-NASH 
substrate was synthesized in tandem with a mass barcode composed 
of the reporter peptide Glu-Fibrinopeptide B (Glu-Fib) via a photo-
cleavable residue (3-amino-3-(2-nitrophenyl)propionyl or ANP) (29). 
Upon protease cleavage, Glu-Fib mass reporters are released from 
the PEG carrier and accumulate in urine (38), allowing recovery of 
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mass barcodes after photolysis. We synthesized Glu-Fib reporters with 
d-stereoisomer amino acids to resist peptidolysis. To enable multiplexed 
liquid chromatography MS/MS (LC-MS/MS) quantification, we 
adapted previously described isobaric encoding strategies (29, 38) 
by enriching Glu-Fib peptides with stable heavy isotope–labeled amino 
acids, thereby extending the number of mass barcodes to 19. We 
verified the ability to resolve and quantify all 19 mass barcodes by 
LC-MS/MS from purified urine samples with R2 values ranging from 
0.915 to 0.995 at dose-relevant concentrations after peak area nor-
malization by peak area from an internal control reporter (PC) spiked 
into the urine before analysis (Fig. 2E and fig. S6). Collectively, our 
data show that mass-barcoded PEGylated peptides are sensitive to 
cleavage by proteases up-regulated in NASH with fibrosis and allow 
multiplexed quantification by MS/MS.

GBTS-NASH enables noninvasive detection of NASH F1-F2 
in a dietary preclinical model
We next tested the ability of 19-plex GBTS-NASH to noninvasively 
detect NASH from urine. We used the dietary model where C57BL/6 
mice are fed a 60% choline deficient, L-amino acid-defined, high fat diet 
(CDAHFD) (Fig. 3A) (39). To confirm NASH and progressive fibrosis, 

we performed liver histology to quantify the NAFLD activity score 
[NAS, a nonweighted score for steatosis, lobular inflammation, and 
hepatocyte ballooning (40)] and extent of fibrosis by PicroSirius 
Red (PSR) staining of collagen fibrils (Fig. 3, B and C, and fig. S7, A 
and B). At 9 weeks on CDAHFD, both the NAS (100% NAS ≥ 5) 
and fibrosis stage were significantly increased (n = 16, 73% F1 and 
27% F2, chi-square *P  ≤  0.05; PSR-positive area  =  4.3  ±  0.3%, 
****P ≤ 0.0001) compared to healthy mice fed a standard chow diet 
(CD) (n = 16, 100% NAS 0, 100% F0; PSR-positive area = 0.5 ± 0.04%) 
(Fig. 3C and fig. S7B). By comparison, liver sections from mice fed 
a 60% high-fat diet (HFD) for 16 weeks to model simple steatosis 
(NAFL) and obesity (body weight: 27.0  ±  0.6 g in CD versus 
44.1 ± 1.6 g in HFD, ****P ≤ 0.0001) showed an increase in NAS 
(65% NAS ≤3 and 35% NAS >3) (Fig. 3C) with steatosis scores close 
to the CDAHFD group (30% steatosis score 1 and 70% steatosis 
score >2) but with little to no lobular inflammation (70% lobular 
inflammation score 0 and 30% lobular inflammation score 1) or 
fibrosis (100% F0, PSR-positive area = 0.4 ± 0.03%) (fig. S7B). To 
compare the extent of protease dysregulation between murine and 
human disease, we performed RNA sequencing (RNA-seq) on liver 
samples from mice with NASH F1-F2 (9 weeks of CDAHFD, n = 6), 
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NAFL (8 weeks of HFD, n = 4), or healthy controls (9 weeks of CD, 
n = 4). We also combined our in-house RNA-seq data with publicly 
available NAFL datasets (GSE138945 and GSE138946) from 
C57BL/6 mice on HFD for 20 weeks (n = 3) (41). Of the 13 proteases 
identified from analysis of human liver samples, 9 were significantly 
up-regulated in murine NASH F1-F2 (log2 fold change ≥ 1.71, 
**P ≤ 0.01) and only 1 or 2 were significantly up-regulated in 
steatosis groups at 8 and 20 weeks (*P ≤ 0.05), respectively, compared 
to healthy liver controls (Fig. 3D).

To assess the potential of GBTS-NASH to detect NASH F1-F2 
from urine, we administered GBTS-NASH by retro-orbital injection 
to cohorts of CDAHFD (n = 48) and CD mice (n = 48) and collected 
urine within the first 2 hours for analysis by mass spectrometry 
(Fig. 3A). Using z scores of normalized reporter concentrations, we 
trained a regularized logistic regression classifier to output a NASH 
probability for each urine sample. Our classifier—which we named 
the fibrosis NASH detection (FiND) classifier—assigned a high 
median NASH probability of 86% to urine samples from CDAHFD 
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Fig. 3. Noninvasive urinary classification of NASH in a dietary mouse model by logistic regression. (A) NASH was modeled in mice using a choline-deficient amino 
acid–defined high-fat diet (CDAHFD) model for 9 weeks. Additional cohorts included mice fed a standard chow diet (CD) for 9 weeks as healthy controls or a 60% high-fat 
diet (HFD) for 16 weeks as simple steatosis NAFL group. In all experiments, mice received GBTS-NASH at a dose of 0.125 nmol per PEGylated peptide. (B and C) Representative 
histology images from hematoxylin and eosin (H&E)– and PicroSirius Red–stained liver slides from patients with NASH or NAFL or CD. Scale bars, 100 m. (C) Percentage 
of animals per group with a specific assigned NAS or fibrosis score for healthy (n = 16, CD 9 weeks), NAFL (n = 15, HFD 16 weeks), and NASH cohorts (n = 16, 9 weeks of 
CDAHFD). The number of animals per group is shown within bars. Chi-square *P ≤ 0.05. (D) Thirteen NASH protease genes were assessed by RNA-seq from liver samples 
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available NAFL datasets (GSE138945 and GSE138946) from C57BL/6 mice kept on the same HFD for 20 weeks (n = 3) using the same sequencing platform. Student’s t test, 
**P < 0.01. (E) Left: Schematic of fibrosis NASH detection (FiND) classifier (using logistic regression and 80/20 cross-validation) generated using LC-MS/MS quantified 
concentrations of 19 mass-barcoded reporters from urine samples from CD healthy (n = 48) or CDAHFD (n = 48) mice. Only healthy and NASH mice were used to train the 
classifier. NAFL mice (n = 15) as well as separate independent cohorts of healthy and NASH mice used to assess MS assay repeatability (R1 at 9 weeks, R2 at 10 weeks, n = 15 
CD and n = 16 CDAHFD), GBTS-NASH treatment time (AM, PM, n = 18–19 CD and 19–20 CDAHFD at 11/12 weeks), or feeding status (fed versus fasted, n = 14 CD and 
15 CDAHFD at 20 weeks) were naively applied to the FiND classifier. Right: FiND-predicted probability of having NASH in each group and cohort. (F) AUROCs of 
GBTS-NASH staging classifier to discriminate NASH in CDAHFD animals from healthy CD mice from all cohorts tested (training, R1, R2, AM, PM, fed, and fasted) and from 
combined healthy + NAFL animals. (G) Logistic regression coefficients for probes included in the FiND classifier. Iterative feature elimination analysis (top) is shown. 
Probes were removed in order of importance to the classifier. The directionality of logistic regression coefficient is represented as back-filled bars for positive and 
white-filled bars for negative (bottom).
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mice and a low median probability of 18% to samples from CD mice 
(Fig. 3E). By ROC analysis of the predicted probabilities, the FiND 
classifier discriminated NASH F1-F2 from healthy urine samples 
with an average test set AUROC of 1.00 (specificity = 100.0% and 
sensitivity = 100.0%) (Fig. 3F). To assess the relative weight of each 
probe to classification, we performed iterative feature elimination 
based on the absolute magnitude of probe coefficient (Fig. 3G). We 
observed that AUROCs for discriminating NASH F1-F2 from 
healthy remained above 0.95 with as many as 7 probes excluded or 
above 0.90 with 10 excluded probes, indicating a redundant, multi-
variate F1-F2 NASH signature. We further asked whether our FiND 
classifier could discriminate NASH F1-F2 from NAFL without 
retraining and found that FiND assigned a median NASH probability 
of 37% to urine samples from NAFL mice (HFD n = 15), which was 
closer in value to the median probability assigned to healthy (18%) 
than to NASH F1-F2 (86%) samples (Fig. 3E). Moreover, when NAFL 
urine samples were grouped together with healthy urine samples, 
FiND discriminated NASH F1-F2 with a classification AUROC of 
0.99 (95% CI 0.98 to 1.00, sensitivity = 100.0%, specificity = 85.7%) 
(Fig. 3F), indicating differentiation of NASH from all nonclinically 
relevant liver phenotypes.

We further tested the robustness of FiND across a wide range of 
non–disease-related variables. We applied the FiND classifier to 
urine samples collected from cohorts of mice to assess the effect of 
repeatability, GBTS-NASH treatment time, and fed-fasted states on 
classification, which was done without additional training. To test 
repeatability, we administered GBTS-NASH to NASH F1-F2 (n = 16) 
and healthy (n = 15) mice at week 9 (R1) and week 10 (R2) and 
found that the FiND output probability of having NASH was 
consistent for each individual animal between the two GBTS-NASH 
administrations (Pearson’s r = 0.96, ****P = 2.68 × 10−18; fig. S8). FiND 
classification assigned a high median NASH probability of 84% to 
both cohorts and classified NASH F1-F2 and healthy mice with 
AUROCs of R1 and R2 = 1.00, specificity of R1 and R2 = 100.0%, 
sensitivity of R1 and R2 = 100.0% (R1 nonsignificantly different 
from R2) (Fig. 3, E and G). Likewise, FiND classification achieved 
similar accuracies regardless of whether GBTS-NASH was adminis-
tered at 8 to 11 AM (n = 18 to 19) or 3 to 6 PM (n = 19 to 20) (AM 
AUROC = 0.95, 95% CI 0.84 to 1.00, specificity = 94.4% and sensi-
tivity = 89.5% versus PM AUROC = 1.00, specificity = 100.0% and 
sensitivity = 100%, nonsignificant). FiND classification was also 
unaffected by whether animals were fed or fasted for 16 hours 
(n = 14 to 15 per group, AUROC of fed and fasted = 1.00, specificity 
of fed = 100.0% and fasted = 92.9%, sensitivity of fed = 93.3% and 
fasted = 100.0%, nonsignificant) (Fig. 3, E and G).

As NAFLD is a risk factor for chronic kidney disease (CKD) 
(42), we tested whether kidney fibrosis or T2DM-induced impaired 
kidney function could affect the performance of our urinary NASH 
test in two separate animal models. To model acute kidney injury 
(AKI) (43, 44), we administered a single intraperitoneal dose of folic 
acid (FA) to C57BL/6 healthy CD 9 weeks (kidney fibrosis, n = 20) 
or NASH CDAHFD 9 weeks (NASH + kidney fibrosis, n = 18) mice 
(fig. S9A), after which animals were kept on their respective diets 
for an additional 2 weeks before GBTS-NASH injection. FA-treated 
animals were compared to age-matched cohorts of CD and CDAHFD 
mice injected with vehicle (healthy, n = 25 and NASH, n = 20). Both 
NASH and NASH + kidney fibrosis cohorts had similar liver NAS 
and fibrosis stage (100% NAS ≥5, 95% F  ≥  1, PSR-positive 
area  =  2.4  ±  0.1% in NASH versus 95% NAS ≥5, 90% F  ≥  1, 

PSR-positive area = 2.5 ± 0.1% in NASH + kidney fibrosis, all 
nonsignificant) (fig. S9, B and C), and both healthy and kidney 
fibrosis animals had normal liver histology. Consistent with FA-
directed nephrotoxicity, FA-treated animals displayed marked 
degenerative histology in tubular epithelial cells (fig. S9D) associated 
with excessive collagen deposition within kidney tissues (mean 
PSR-positive area > 6.9% in kidney fibrosis or NASH + kidney 
fibrosis versus mean PSR-positive area  <  2.6% in healthy and 
NASH, ****P  ≤  0.0001; fig. S9E). We prospectively applied our 
FiND classifier without retraining (fig. S9F) and found that FiND 
predicted NASH F1-F2 with similar accuracies whether mice had AKI 
or not (vehicle AUROC = 1.00, sensitivity = 100%, specificity = 88% 
versus FA AUROC = 0.99, 95% CI 0.98 to 1.00, sensitivity = 100%, 
specificity = 95%) (fig. S9, G and H). As AKI develops suddenly and 
more frequently in cirrhotic patients (45) whereas CKD develops 
gradually as a result of chronic illnesses such as diabetes (42), we 
further tested GBTS-NASH using the Black and Tan Brachyury 
(BTBR) ob/ob model of obesity and diabetes with mild features of 
diabetic nephropathy (DN) (46). These mice are insulin resistant, 
hyperinsulinemic, severely hyperglycemic, and obese with progressive 
proteinuria, polyuria, and glomerular hypertrophy (46, 47). BTBR 
ob/ob mice fed CD for 9 weeks (DN, n = 19) displayed higher weight 
gain (****P  ≤  0.0001; fig. S10, A and B), plasma triglyceride 
(*P ≤ 0.05), and cholesterol (**P ≤ 0.01) (fig. S10, C and D) than 
control age- and strain-matched BTBR wild-type (WT) mice (n = 20). 
However, DN mice did not spontaneously develop a NASH pheno-
type (50% had mild NAFL phenotype without fibrosis) (fig. S10E). 
By contrast, BTBR WT mice developed NASH liver phenotype after 
a CDAHFD for 9 weeks (100% NAS >5 and 65% F ≥ 1 in BTBR WT 
CDAHFD, n = 19; fig. S10E). Because of strain difference, we re-
trained a classifier based on BTBR WT healthy and NASH mice 
(FiND_BTBR classifier; fig. S10F) with high NASH prediction 
accuracy (AUROC = 0.95, 95% CI 0.87 to 0.99, sensitivity = 89.5 
specificity = 89.5). FiND_BTBR classified DN animals as healthy 
(median NASH probability = 25.6% for DN, 15.1% for BTBR WT 
CD, and 80.3% for BTBR WT CDAHFD; fig. S10G), and when 
urine samples from DN and healthy mice were grouped together, 
FiND_BTBR discriminated NASH without altering classification 
accuracy (AUROC = 0.95, 95% CI 0.88 to 0.99, sensitivity = 89.5%, 
specificity = 86.8%; fig. S10H). Together, these results demonstrated 
that multivariate classifiers trained on urinary reporters classify 
NASH F1-F2 with high accuracy under a wide range of comorbid 
and nondisease conditions.

GBTS-NASH sensors predict diet-induced fibrotic  
NASH regression
NASH and fibrosis activity and stage fluctuate over time as part of 
the natural history of the disease. Natural regressors or placebo-
treated patients often show histological improvement in both fibrosis 
and disease activity after their enrollment in lifestyle-change pro-
grams at the time of recruitment into clinical trials (48, 49). There-
fore, we tested the ability of GBTS-NASH to report on NASH with 
fibrosis regression. C57BL/6 mice were fed CDAHFD for 9 weeks 
before being switched to CD for 1 or 3 weeks to model early and late 
regression, respectively (Fig.  4A). By liver histology, NAS scores 
progressively decreased from week 1 (80% of early regression, NAS ≤3, 
n = 15) to week 3 (100% of late regression, NAS ≤2, n = 17) on CD 
compared to mice on CDAHFD for 9 weeks (100% NAS ≥6, n = 16) 
(chi-square *P ≤ 0.05) (Fig. 4B and figs. S7A and S11). Fibrosis 
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scores likewise progressively decreased from week 1 (20% of early 
regression at F0 and 80% at F1, n = 15) to week 3 on CD (80% of late 
regression at F0 and 20% at F1, n = 17) compared to NASH animals 
(70 and 30% at F1 and F2, respectively, n = 16) (chi-square *P ≤ 
0.05) (Fig.  4B). Although histology scores for fibrosis were de-
creased in regressed animal groups, collagen staining by PSR was 
unchanged compared to stable/progressing NASH mice (early 
regression PSR-positive area = 5.2 ± 0.2% or late regression PSR-​
positive area  =  4.6  ±  0.4% versus CDAHFD 9 weeks PSR-positive 
area = 4.3 ± 0.3%, nonsignificant; fig. S7B). A possible explanation 
could be the absence of regression of perisinusoidal fibrosis (PSF) in 
this model (95% early regression, 100% late regression, and 100% 
CDAHFD 9 weeks with PSF score > 1, nonsignificant; fig. S7A), a 
feature not included in the classical NASH clinical research network 
(CRN) staging of fibrosis. NASH mice on CD for 1 week resulted in 
a significant decrease in mRNA expression of 7 of 13 NASH proteases 
when compared to the NASH 9 weeks baseline group (*P ≤ 0.05; 
Fig. 4C), which remained elevated compared to transcript levels 
from healthy mice (fig. S12).

On the basis of the improvement in liver phenotype by NAS and 
fibrosis histology scores and protease transcript abundance from 
diet change, we postulated that FiND classification would be able to 
track regression by assigning NASH probabilities that decrease over 
time. To test this, we administered GBTS-NASH to CDAHFD mice 
at 9 weeks and to CDAHFD mice switched to CD for 1 and 3 weeks 
(10 and 12 weeks total). As expected, urine samples from NASH 
animals before CD were undistinguishable from the previous 
NASH training cohort used to generate the FiND classifier, by both 

median NASH probabilities (0.83 versus 0.84, P = 0.65) (Fig. 4D) and 
AUROC analysis (AUROC = 0.53, 95% CI 0.40 to 0.66) (Fig. 4E). By 
contrast, NASH probabilities assigned to the early and late re-
gression cohorts progressively decreased (Fig. 4D, early regression 
0.75 ± 0.15, n = 15; late regression 0.59 ± 0.16, n = 17) relative to 
NASH samples (***P ≤ 0.001) and resulted in the ability to discrimi-
nate regression samples from fibrotic NASH with increasing AUROCs 
over time (early regression AUROC = 0.79, 95% CI 0.66 to 0.91; late 
regression AUROC = 0.84, 95% CI 0.70 to 0.95; Fig. 4E). Consid-
ering that FiND was trained on fibrotic NASH and healthy samples, 
we further asked whether detecting fibrotic NASH regression would 
be improved if classifier training set included urine samples from mice 
undergoing regression. To test this, we trained a separate fibrosis 
NASH regression (FiNR) classifier that included NASH, early regres-
sion, and late regression urine samples (Fig. 4, F and G). Under these 
conditions, FiNR predicted early regression (AUROC  =  0.98, CI 
95% 0.95 to 1.00) (Fig. 4F) and late regression from fibrotic NASH 
(AUROC = 0.98, CI 95% 0.92 to 1.00) (Fig. 4G) with higher accura-
cies compared to when regression samples were not part of the 
training set. Collectively, our results provided support that fi-
brotic NASH regression can be detected as early as 1 week after diet 
change, and classification accuracies improve when regression sam-
ples are included in the training set.

GBTS-NASH indicates early response to a hepatoprotective 
fibrotic NASH treatment combination
Fibrotic NASH is a metabolic disease and combinations of drugs 
with complementary mechanisms of action targeting metabolic 
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CDAHFD mice at 9 weeks (NASH) to a CD for 1 or 3 weeks (Early Reg. and Late Reg.). NASH animals received GBTS-NASH (0.125 nmol per PEGylated peptide) at baseline 
(n = 32) and then again at 1 week (n = 15) and 3 weeks (n = 17) after diet change (10 and 12 weeks total). (B) Histology NAS and fibrosis scores. Percentage of animals per 
group with a specific assigned NAS or fibrosis score is displayed. Number of animals for each scoring category is also shown within bars. Chi-square *P ≤ 0.05, n = 16 to 
17 per group. (C) NASH liver expression of the 13 human NASH protease genes detected by RNA-seq was compared to healthy CD liver (n = 4 per group). (D and E) NASH 
animals at 9 weeks baseline (Reg. baseline, green, n = 32), and 1 week (Early Reg., n = 15) or 3 weeks (Late Reg., n = 17) after being switched to CD were applied naively to 
the FiND classifier (training on 48 CD and 48 CDAHFD for 9 weeks). FiND-predicted probability of having NASH is depicted in (D) and AUROC curves in (E), ***P ≤ 0.001. 
(F and G) FiNR was retrained by including MS urine outputs from regressed animals into the FiND classifier and predicted early (F) and late (G) NASH regression from 
stable/progressing NASH.
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pathways are under investigation. A triple treatment combination 
(TRIPLE) composed of a farnesoid X nuclear receptor agonist 
(FXRa) to modulate bile acid, lipid, and glucose metabolism (50), 
an acetyl coenzyme A (CoA) carboxylase inhibitor (ACCi) to reduce 
fatty acid synthesis (51), and an apoptosis signal-regulating kinase 1 
inhibitor (ASK1i) to block lipid-induced hepatocyte lipoapoptosis 
(52) was under evaluation as single agents and pairwise combina-
tions as part of the phase 2 ATLAS trial (NCT03449446) (53). Dual 
treatment combinations ASK1i + FXRa, ASKi + ACCi, or ACCi + 
FXRa were also recently reported to exhibit hepatoprotection by 
reducing progression of inflammation and fibrosis in a rat model of 
NASH (54–56). We therefore designed a study to determine the 
ability of GBTS-NASH to indicate response to TRIPLE treatment. 
Our study included four cohorts of Male Wistar Han rats that were 
placed on CD for 12 weeks, CDAHFD for 6 weeks, CDAHFD for 
12 weeks with daily administration of vehicle from week 6 to 12, or 
CDAHFD for 12 weeks with daily administration of TRIPLE treatment 
from week 6 to 12 (Fig. 5A). To confirm response to treatment, we 
compared plasma markers and histology of liver sections collected 
at weeks 6 and 12. Rats fed a CDAHFD for 6 weeks were character-
ized by elevated plasma ALT (287 ± 23 UI/liter, ****P ≤ 0.0001) and 
CK 18 M30 antigen (158 ± 16 mUI/ml, ****P ≤ 0.0001) (fig. S13, A 
to D); NAS scores (NAS ≥ 4, n = 10, chi-square *P ≤ 0.05) were 
increased in correlation with marked steatosis and lobular 

inflammation (CD68-positive area: 10.5 ± 0.6, ****P ≤ 0.0001) with 
low to moderate fibrosis [40% F0, 40% F1, 10% F2, 10% F3, chi-square 
*P ≤ 0.05; PSR-positive area: 2.1 ± 0.3; –smooth muscle 
actin (SMA)–positive area 3.0  ±  0.4; hyaluronic acid (HA): 
29.6 ± 3.4 ng/ml; procollagen III amino terminal propeptide 
(PIIINP): 24.1 ± 1.5 ng/ml, ***P ≤ 0.001] (Fig. 5B and fig. S13A). After 
six additional weeks on CDAHFD, both NAS scores (median = 6) 
and fibrosis stage (100% ≥F3, chi-square *P ≤ 0.05; PSR-positive 
area: 8.9 ± 0.9) increased in severity compared to pretreatment liver 
sections (****P ≤ 0.0001; Fig. 5B and fig. S13B). By contrast, at the 
end of TRIPLE treatment at week 12, NAS scores (median = 4) and 
fibrosis stage (20% F0, 60% F1, 13% F2, 7% F3, chi-square *P ≤ 0.05; 
PSR-positive area: 2.4 ± 0.2) were statistically equivalent to liver 
section pretreatment and did not progress in disease severity. Re-
duction in NAS score and liver collagen deposition in TRIPLE-treated 
animals was associated with significant decrease in SMA- and 
CD68-positive cells compared to vehicle-treated animals (CD68-
positive area, 10.8  ±  0.5 versus 4.3  ±  0.2; SMA-positive area: 
6.8 ± 0.8 versus 0.6 ± 0.1, ****P ≤ 0.0001; fig. S13, C and D). Although 
the PSR-positive area was similar between NASH at baseline and 
TRIPLE-treated cohort, SMA staining was significantly lower in 
TRIPLE-treated rats (0.6 ± 0.1, ****P ≤ 0.0001), almost to that of 
the healthy cohort (3.0 ± 0.4) (fig. S13, B and C), reflective of the 
rapid reversibility of active fibrogenesis before complete reduction 
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Fig. 5. GBTS-NASH sensors detect drug-induced fibrotic NASH hepatoprotection in rats. (A) We fed male Wistar Han rats either CD [(i), healthy, n = 10] or CDAHFD 
for up to 12 weeks (n = 40). From weeks 6 to 12 of CDAHFD feeding, a subset of NASH rats was administered vehicle [(iii), n = 15] or TRIPLE (ACC inhibitor at 10 mg/kg, FXR 
agonist at 30 mg/kg, and ASK1 inhibitor at 0.03% in the diet) for 6 weeks [(iv), TRIPLE-treated, n = 15]. A baseline CDAHFD 6-week animal group was also tested [(ii), NASH, 
n = 10] and used for histology scoring. Animals were administered GBTS-NASH (0.41 nmol per PEGylated peptide) at 6, 7, 8, 10, and 12 weeks. Bladders were voided at 0 
to 120 min, and urine was collected and pooled over the following 120- to 180-min interval. (B) NAS and fibrosis histology score on end point histology liver samples. The 
percentage of animals with a specific assigned NAS or fibrosis score is displayed. The number of animals per group is shown within bars. Chi-square *P ≤ 0.05. (C) Log2 fold 
change protease expression from RNA-seq analysis. (D) Logistic regression classifiers were trained on either fpkm (measured by RNA-seq) from 13 NASH protease gene 
(RNA ≥F2, black) or urine concentrations of 19 mass-barcoded reporters (measured by LC-MS/MS) (GBTS-NASH ≥F2 classifier, green) relative to histology fibrosis score 
with 100 rounds of randomized 80% training, 20% testing (80/20) cross-validation on end point NASH animals with available liver histology [NASH, (ii), n = 10; vehicle, (iii), 
n = 15; TRIPLE, (iv), n = 15]. (E to G) Baseline NASH 6 weeks (green) before administration of vehicle [(iii), n = 15] or TRIPLE [(iv), n = 15], and stable/progressing NASH at 7, 
8, 10, and 12 weeks [veh., (iii), n = 15 for each], early [7 and 8 weeks of TRIPLE, (iv), n = 15], and late treatment response [10 and 12 weeks of TRIPLE, (iv), n = 15] MS urine 
outputs were applied naively to the GBTS-NASH ≥F2 classifier. The predicted probability of being ≥F2 is shown for each group in (E) and AUROC curves in (F) and (G). 
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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in established tissue collagen is seen. Also, lower plasma abundance 
of markers of inflammation and liver fibrosis was observed in 
TRIPLE-treated rats compared to vehicle-treated animals (ALT: 222 ± 
10 versus 128 ± 10; CK18-M30: 180 ± 15 versus 81 ± 9 mUI/ml iv; 
HA: 54.8 ± 7.7 versus 25.7 ± 1.7 ng/ml iv; PIIINP: 19.4 ± 1.9 versus 
10.1 ± 0.6 ng/ml iv, ***P ≤ 0.001; fig. S13A).

To determine whether TRIPLE treatment affected liver protease 
expression, we performed RNA-seq on rat liver tissue. At 6 and 
12 weeks on CDAHFD without TRIPLE treatment, liver expression 
of 11 and 12 proteases, respectively, from our 13-protease human 
NASH panel was significantly elevated compared to healthy rats 
(*P ≤ 0.05; Fig. 5C and fig. S14), confirming similar protease 
dysregulation in rat NASH. By the end of TRIPLE treatment, liver 
protease transcripts were significantly decreased compared to vehicle 
(Fig. 5C) but remained elevated compared to those in healthy rats 
(*P ≤ 0.05; fig. S14). We therefore asked whether changes in RNA 
transcript abundance could discriminate response to TRIPLE treat-
ment. We trained a regularized logistic regression RNA-NASH 
≥F2 classifier (100 rounds of cross-validation, 80/20 train/test split) 
to discriminate rats with ≥F2 fibrosis from F0-F1 (Fig. 5D) and 
found that it discriminated TRIPLE-treated animals from vehicle 
controls with an AUROC of 0.99 (95% CI 0.97 to 1.00) (fig. S15).

To test the ability of GBTS-NASH to indicate treatment response, 
we administered GBTS-NASH at weeks 6, 7, 8, 10, and 12 weeks 
(Fig. 5A) and analyzed urinary concentrations of our synthetic 
reporters. In contrast to mice, which do not develop fibrosis beyond 
F2 (Fig.  3C), rats on CDAHFD develop severe F3-F4 fibrosis 
(Fig. 5B). Therefore, we first trained a binary classifier to discriminate 
NASH ≥F2 versus F0-F1 using urine samples collected at 6 and 
12 weeks from all cohorts of rats on the CDAHFD (n = 10 at 6-week 
baseline, n = 15 vehicle- or TRIPLE-treated animals). Samples from 
7, 8, and 10 weeks were excluded from training as rats were not 
euthanized at those time points, and therefore, histological “ground 
truths” of disease severity were not available. Similar to the classifi-
cation accuracy achieved in mice, our GBTS-NASH ≥F2 classifier 
in rats discriminated ≥F2 fibrosis from F0-F1 with high sensitivity and 
specificity (AUROC = 0.90, 95% CI 0.79 to 0.97, specificity = 82.8%, 
sensitivity = 83.3%). Moreover, our GBTS-NASH ≥F2 classifier 
achieved an accuracy that was statistically equivalent to RNA classi-
fication (Fig. 5D) and predicted ≥F2 probabilities that highly 
correlated to the output probabilities by RNA classification 
(Pearson’s r = 0.7, P = 5.16 × 10−8; fig. S16). To assess treatment 
response, we reasoned that the ≥F2 threshold could be applied to 
determine on-treatment response given that rats on vehicle devel-
oped severe fibrosis (F3-F4) whereas most of the TRIPLE-treated 
cohort (12 of 15 rats) did not progress beyond F1 (Fig. 5B). Therefore, 
we applied our GBTS-NASH ≥F2 classifier without retraining to 
intermediary time points at weeks 7, 8, and 10 (1, 2, and 4 weeks 
total treatment, respectively). Under these conditions, the output 
NASH ≥F2 probabilities for TRIPLE combination treatment and 
vehicle controls, which were statistically equivalent at pretreatment 
(median 52% versus 47% respectively, P = 0.56), significantly diverged 
within 1 week on treatment (median 32% versus 63%, ***P < 0.001) 
(Fig. 5E), allowing discrimination of treatment response with an 
average test AUROC of 0.91 (95% CI 0.78 to 1.00) (Fig. 5F). At later 
time points, further separation of the median NASH ≥F2 probabilities 
between TRIPLE- and vehicle-treated cohorts was observed, main-
taining the ability to distinguish treatment responses by AUROC 
analysis (Fig. 5, E and G). Collectively, these results highlighted the 

use of GBTS-NASH to discriminate NASH ≥F2 from F0-F1 disease 
and to indicate response to a hepatoprotective TRIPLE combina-
tion treatment as early as 1 week on treatment in rats.

DISCUSSION
Noninvasive methods to diagnose NASH, monitor changes in 
disease severity, and report on response to drug treatment earlier 
are needed. We showed by transcriptomic analysis of human liver 
biopsies that proteases are widely dysregulated in progressive 
NASH, and panels as few as 13 proteases discriminated ≥F2 from 
F0-F1 with high accuracy. This led us to develop a bespoke library 
of PEGylated peptides to detect NASH proteases by releasing 
cleaved reporters into urine for multiplexed quantification by mass 
spectrometry. In rodent models of NASH, we showed that binary 
classifiers trained on urine samples accurately distinguished NASH 
from NAFL, separated ≥F2 from F0-F1 fibrosis, and indicated 
disease regression and treatment response as early as 1 week after 
diet change or TRIPLE combination treatment.

Our discovery pipeline focused on transcriptomic analysis of 
human NAFLD liver biopsies to identify protease targets based on 
differential expression. Across two independent patient cohorts, we 
identified a panel of 13 proteases whose transcript abundances 
allowed binary classification of NASH ≥F2 from F0-F1, which is an 
important disease stage for clinical intervention and patient entry 
into NASH drug trials. This binary classification approach could 
potentially be extended to identify protease signatures that discrimi-
nate additional thresholds (for example, ≥F3) or developed into a 
multiclass staging classifier with a larger set of samples (for exam-
ple, F1, F2, F3, and F4 simultaneously). Similar to other classifiers 
that rely on liver biopsy as the reference standard, the accuracy of 
RNA-based classification will likely be bounded by the accuracy of 
the liver biopsy itself, which, owing to sampling heterogeneity and 
interpretation errors, is accurate for staging fibrosis in 80 to 90% of 
patients (57). This implies that even if all other potential sources of 
error have been minimized, our classification results from the 
MGH/STM and NCL cohorts will likely not markedly deviate from 
our reported AUROCs (0.86 to 0.90). For these reasons, our dis-
covery pipeline served primarily to nominate protease candidates 
for GBTS-NASH probe development.

Our panel of 13 NASH proteases informed the design of a 19-plex 
library of PEGylated peptides that was larger than the number of 
proteases to provide overlapping coverage and the ability to capture 
high-dimensional data. Although the same set of probes were used 
in all our animal experiments, the ability to capture high-dimensional 
data allowed us to develop separate classifiers to detect NASH, regres-
sion, and treatment response with high accuracies (AUROCs >0.9). 
Moreover, post hoc analysis revealed that not all probes were equally 
weighted and similar performance accuracy could be attained when 
as many as 10 probes were excluded from the classifier. Although 
the latter can be partially attributed to the lack of variation in 
isogenic models, these observations also highlight the potential to 
use a “superset” of probes for patient use. This may provide the ability 
to train separate classifiers across a range of intended use cases 
while allowing for the possibility to down-select to a smaller set of 
probes after validation.

Preclinical models of NASH are the cornerstone for testing 
pharmacological agents and diagnostics, but they have limitations. 
The CDAHFD model causes more severe inflammation and 
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fibrogenesis compared to other nutritional models of NASH but 
fails to reproduce the full spectrum of liver pathology that charac-
terizes human NASH. For instance, mice fed CDAHFD are contrary 
to human fatty liver disease because they do not develop weight 
gain, dyslipidemia, or insulin resistance (39). Also, advanced fibrotic 
NASH and cirrhotic NASH (≥F3) do not develop in CDAHFD mice 
even after extended periods of feeding (20 weeks or more). Although 
rats fed CDAHFD replicate fibrosis range from F1 to F4, several key 
NASH histological features, such as hepatocyte ballooning, were not 
observed in FFPE-liver samples. Despite these limitations, we iden-
tified proteases that were similarly dysregulated between human 
and rodent NASH by transcriptomic homology analysis. As the ma-
jority of overlapping proteases (MMPs and cathepsins) are associated 
with inflammatory fibrosis (58, 59), our test readily discriminated 
fibrotic NASH. By contrast, our test did not identify NAFL mice as 
being very different from healthy mice, as mice on HFD become 
obese and develop hepatic steatosis but with little inflammation and 
no fibrosis. Furthermore, our test was not confounded by comorbid 
chronic conditions associated with NASH such as obesity, diabetes, 
and CKD. These findings imply that our current test may be sensitive 
to inflammatory and fibrotic signals, potentially opening up the 
possibility for a future panel of probes to distinguish pathway-
dependent activation signals.

Our results highlight potential strategies for clinical trial design. 
In both mice and rats, we observed that urinary classifiers trained to 
differentiate NASH from NAFL and healthy urine samples (for 
example, FiND and GBTS-NASH ≥F2 classifiers) could be applied 
to track NASH regression by diet change or TRIPLE treatment 
without retraining separate classifiers, albeit with reduced accuracy 
compared to classifiers directly trained on the regression samples 
(like FiNR). In both studies, the classifiers assigned NASH proba-
bilities to urine samples that decreased as early as 1 week after diet 
change or TRIPLE combination treatment. These results indicate 
that it may be possible to design a clinical trial to train a single 
classifier to accurately differentiate NASH and stages of hepatic 
fibrosis, which then could be applied to track patient trajectory across 
multiple use cases (for example, regression or drug response). This 
classifier would, in principle, report changes in patient livers by 
monitoring how urine samples approached or deviated from a 
classifier-identified protease signature for a particular threshold, 
such as NASH ≥F2 as shown in our rat study. This approach would 
be similar to histological staging and could be further bolstered by 
future studies showing that protease dysregulation at particular 
stages of NASH fibrosis is conserved (for example, stable versus 
rapid progressors) regardless of dynamics (that is, progression or 
regression to the same stage) or drugs with different mechanisms of 
action. Our transcriptomic comparisons throughout this study 
show that the underlying protease biology is indeed similar, considering 
the high correlation of protease dysregulation between the MGH/
STM and NCL datasets despite the cohorts representing different 
NASH populations (bariatric surgery versus natural history) with 
different clinical variables (BMI, age, ALT, and AST), as well as 
similar protease dysregulation across NASH regression and treat-
ment response in both mouse and rat studies. An alternative strategy 
to a single classifier would be to design clinical trials for each 
intended use case. The advantage of dedicated classifiers that have 
been trained on the samples of interest is that their classification 
accuracy would likely exceed that of a single stage-specific classifier. 
This is supported by our animal studies where we observed that the 

ability to discriminate NASH regression by diet change improved when 
these samples were included in the training cohort.

We recognize potential limitations of our approach using pre-
clinical NASH models lacking concurrent features of the metabolic 
syndrome with histological disease phenotype. An alternative model, 
the DIAMOND model (60), recapitulates both fibrotic NASH to-
gether with metabolic features (obesity, glucose intolerance, and 
adipose tissue inflammation) of the human disease and could be 
considered for further validation of GBTS-NASH specificity. 
Additional studies to directly assign our sensed proteolytic signal 
to liver cell-type population—for example, in liver-specific animal 
models depleted in macrophages or hepatic stellate cells—are also 
needed in future studies to provide insights into sensed biological 
pathways. In the human NAFLD staging system, fibrosis is defined 
in the context of disease progression and it is not yet established 
whether the current staging system adapts well to regression patterns. 
Thus, although diet-induced regression of NASH for 3 weeks 
reversed fibrosis stage to zero using standard histological staging, 
other markers of fibrosis (such as PSR-positive area) were un-
changed compared to stable/progressing NASH animals. This 
discordance in the regressed animals could be due to unchanged 
PSF score, a histological parameter not included in the NASH CRN 
staging of fibrosis. In the future, deconvoluting multiplexed NASH 
protease signature using knockout animal models for specific in-
flammation or fibrosis-related proteases will clarify their relative 
contribution to the biological signal measured by GBTS-NASH.

Together, our studies provide support for the use of GBTS-NASH 
as a noninvasive urine test to diagnose, monitor, and assess 
pharmacodynamic responses by multiplexed quantification of liver 
protease activities. Additional future studies are warranted to evaluate 
the safety of GBTS-NASH in humans and qualify context of use and 
clinical efficacy in comparative end point studies.

MATERIALS AND METHODS
Study design
The goal of this study was to identify a liver protease signature 
specific to patients with NASH ≥F2 and determine whether intra-
venous administration of a multiplexed library of activity-based 
PEGylated peptides could be used to sensitively and specifically 
predict NASH and stage fibrosis in rodent models of NASH. A total 
of 355 NAFLD liver biopsies covering the full histological disease 
spectrum were included in this study. This discovery cohort was 
used for NanoString analysis to identify protease signature in 
NASH ≥F2. We cross-validated our results with a second independent 
cohort of 146 NAFLD liver biopsies using the same NanoString 
technology. Detailed phenotypic description and demographics are 
reported in table S1. Both cohorts were stratified according to histo-
pathological disease grade and stage (NAFL, NASH-F0, -F1, -F2, 
-F3, and -F4). Logistic regression modeling was used to correlate 
gene expression with histological features. We further developed a 
library of 19 PEGylated peptides (GBTS-NASH) to detect NASH 
proteases by releasing cleaved reporters into urine for multiplexed 
quantification by mass spectrometry. We tested their performance 
in predicting NASH and staging fibrosis in rodent models of NASH 
progression and regression. Several logistic regression classifiers 
were used to correlate urinary cleaved reporters to disease pheno-
type or to fibrosis stage. The FiND classifier was trained and tested 
on 48 healthy (CD 9 weeks) animals and 48 NASH (CDAHFD 9 weeks) 
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to predict NASH progression. NAFL cohorts (HFD 16 weeks, 
n = 15) or additional cohorts of CD and CDAHFD mice (AM, PM, 
R1, R2, fed, fasted, vehicle, FA cohorts; n = 14 to 20 per group and 
per cohort) were all applied naively to the FiND classifier. FiNR 
classifier was built on 32 NASH baseline 9 weeks and 15 early 
regression animals (CDAHFD 9 weeks + CD 1 week) or on 32 
NASH baseline 9 weeks and 17 late regression animals (CDAHFD 
9 weeks + CD 3 weeks) to predict NASH regression. Last, GBTS-
NASH ≥F2 classifier was trained and tested on rat cohorts of NASH 
(CDAHFD 6 weeks, n = 10), NASH with vehicle (CDAHFD 6 weeks + 
vehicle 6 weeks, n  =  15), and NASH with TRIPLE treatment 
(CDAHFD 6 weeks + TRIPLE 6 weeks, n = 15) to predict NASH ≥F2.

Human liver biopsies
Biopsies were collected from individuals visiting the Weight Loss 
Surgery and Obesity clinic at MGH and STM. All protocols, consent 
forms, and manual of operations were approved by the institutional 
review board for each site. Before surgery, patients were prospec-
tively screened for NAFLD based on preset criteria based on abnor-
mal ALT, AST blood biochemistry assays, or ultrasound features 
and offered a liver biopsy. Exclusion criteria included excessive 
alcohol consumption and liver diseases other than NAFLD. The 
subjects’ demographic characteristics, medical history, medication 
use, clinical tests, and liver biopsy results were collected (table S1). 
A wedge (for 90 patients) or core needle biopsy (for 237 patients) 
was taken at the beginning of the surgery and flash-frozen (for 
82 patients) or stored in RNA-later (for 245 patients). Because 
the weight loss surgery cohort had few patients with advanced fibrosis, 
we augmented the cohort with archived FFPE-biopsy samples (for 
28 patients, all core needle biopsies) with NASH F2 to F4. By pathology 
read, the final cohort included 76 histologically normal liver sam-
ples, 90 samples with NAFLD, and 189 samples with NASH. Of the 
144 NASH samples, there were 74 F0, 62 F1, 34 F2, 13 F3, and 6 F4 
using the NASH CRN scoring system closely similar to the expected 
stage distribution from the suspected U.S. NASH population (61). 
FFPE and frozen biopsies from a natural history cohort of 146 
NAFLD patient samples recruited at Newcastle upon Tyne Hospitals 
NHS, UK, and Hôpital Pitié Salpêtrière, France, were obtained from 
the European NAFLD Registry, including 33 NAFL and 113 NASH 
(5 F0, 29 F1, 24 F2, 46 F3, and 9 F4) (34). In the NASH group, 
longitudinal liver samples were collected twice for 21 patients, three 
times for 3 patients, and four times for 2 patients with a median 
time between biopsies of 5.9 years (min-max range of 1.2 to 14.6 year) 
for a total of 179 liver samples. All biopsies were read by the same 
blinded pathologist to improve scoring accuracy. The FIB-4 score 
was calculated and applied as previously described (62). Liver stiff-
ness as assessed by FibroScan was available for 19 NAFL and 63 
NASH: 25 F0-F1, 10 F2, 25 F3, and 3 F4. RNA extraction was per-
formed on 5 to 20 g of liver tissue using the miRNeasy Mini Kit 
(Qiagen) for flash-frozen samples and RNA-later liver or High Pure 
FFPET RNA Isolation Kit (Roche Life Science) for FFPE samples, 
according to the manufacturer’s instructions. RNA quantity and 
quality were assessed using Agilent 2100 Bioanalyzer (Santa Clara). 
RNA integrity number (RIN) numbers, ranging from 1.5 to 9, were 
appropriate for use with the nCounter Technology (63).

Animal models
Five-week-old C57BL/6 (Taconic, Charles River Laboratories) or 
BTBR WT and BTBR ob/ob male mice (BTBR.Cg-Lepob/WiscJ; The 

Jackson Laboratory) were acclimated for a week at the Charles River 
Accelerator and Development Lab animal facility (Cambridge, MA). 
At 6 weeks of age, mice were fed a CDAHFD (from Research Diets, 
#A-06071302) for up to 20 weeks to develop a NASH phenotype 
with progressive fibrosis (35). To obtain a benign simple steatosis 
(NAFL) liver phenotype, C57BL/6 mice were fed with a 60% HFD 
(Research Diet, #D12492) for 8 and 16 weeks. CDAHFD and HFD 
have similar protein (18 versus 20% kcal), fat (62 versus 60% kcal), 
carbohydrate (21 versus 20% kcal), and energy density (5.21 kcal/g 
for both) content. Age-matched mice fed a standard CD (Charles 
River Diet 18% Vac Pac 5066) were used as controls. To induce 
NASH regression, C57BL/6 mice were fed a CDAHFD for 9 weeks 
and then switched back to a standard CD for an additional 1 or 
3 weeks. A single dose of FA (Sigma-Aldrich) dissolved in 0.3 mM 
sodium bicarbonate (250 mg/kg body weight) was administered 
intraperitoneally to C57BL/6 mice fed a CD or CDAHFD for 9 weeks; 
experiments were carried out 2 weeks after FA administration. At 
the appropriate time of the experiment, mice were dosed via retro-
orbital route with 100 l of a solution of mannitol/sodium containing 
0.125 nmol of each of 19 PEG-conjugated substrates (GBTS-NASH). 
After injection with GBTS-NASH, mice were placed on 96-well 
plates surrounded by custom-made restrainer to keep the mice con-
tained for urine collection. Bladders were voided 60  min after 
GBTS-NASH administration, and all urine produced 60 to 120 after 
GBTS-NASH injection was collected and pooled together (between 
50 and 200 l of urine on average).

Male Wistar Han rats (10 weeks old, Charles River Laboratories) 
were fed either a control diet (5CR4) or CDAHFD (Research Diets, 
A16092003) for 12 weeks. From weeks 6 to 12 of CDAHFD feeding, 
a subset of CDAHFD rats were administered vehicle or a TRIPLE 
drug combination from GILEAD Sciences Inc., which consisted of 
an ACC inhibitor (ACCi; GS-834536) dosed at 10 mg/kg qd, an 
FXR agonist (FXRag, CILO) dosed at 30 mg/kg qd, and an ASK1 
inhibitor (ASK1i, GS-4793) dosed in chow at 0.03% (55–57). At the 
appropriate time of the experiment, rats were dosed intravenously 
with 0.9 ml of a mannitol/sodium containing 0.41 nmol of each of 
19 PEGylated substrates (GBTS-NASH). After injection with GBTS-​
NASH, rats were placed in metabolic cages to allow facile urine 
recovery. Bladders were voided 120 min after GBTS-NASH admin-
istration, and all urine produced 120 to 180 after GBTS-NASH injec-
tion was collected and pooled together (between 500 and 1000 l 
of urine on average).

Peptide synthesis and conjugations
All peptides were synthesized by CPC Scientific Inc. For fluorogenic 
assays, peptides were flanked with the fluorophore-quencher pair 5-FAM-
CPQ2. For in vivo urine experiments, peptides were barcoded with 
Glu-Fib–derived and heavy isotope–labeled peptides. PEGylated 
peptides were pooled prepared before in  vivo experiments and 
stored at 4°C in phosphate-buffered saline. Typically, 0.125 nmol 
per PEGylated peptide in a total volume of 100 l of sterile saline 
was injected per mouse or 0.41 nmol in 0.9 ml per rat.

Statistical analysis
Analyses were performed using Python 3.6.9 (scikit-learn 0.21.2, 
statsmodels 0.11.1, numpy 1.18.5, pandas 1.0.4) or GraphPad Prism. 
Significance testing was performed using either Student’s t test or 
one-way ANOVA for normally distributed data, or Mann-Whitney 
U test for data that were not normally distributed. Normality was 
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checked using the Shapiro-Wilk test ( = 0.05). Multiple testing 
correction was performed using the Bonferroni method. t-SNE was 
calculated on fluorescence change in 159 fluorescence resonance 
energy transfer–based protease substrates when incubated with 
NASH proteases. Logistic regression was used for gene or MS urine 
signal [using mean-normalized peak area ratio (PAR) values]. Clas-
sification performance was estimated through cross-validation with 
randomized 80% training and 20% validation splits, as the classifier 
is trained on 80% of the data and then blindly applied to the remain-
ing 20%. This process was repeated 100 times with randomized 
training/validation splits. The classification performance is reported 
as the mean across the validation sets. AUCs were compared using 
the bootstrap method with 10,000 permutations. Diagnostic cutoffs 
were chosen to balance specificity and sensitivity using a separate 
cross-validation loop to avoid overfitting.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scitranslmed.abe8939
Supplementary Materials and methods
Figs. S1 to S16
Tables S1 to S3
Data file S1
Reference (64)

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
	 1.	 Z. Younossi, Q. M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, J. George, E. Bugianesi, 

Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. 
Nat. Rev. Gastroenterol. Hepatol. 15, 11–20 (2018).

	 2.	 Q. M. Anstee, H. L. Reeves, E. Kotsiliti, O. Govaere, M. Heikenwalder, From NASH to HCC: 
Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 16, 411–428 
(2019).

	 3.	 C. Fierbinteanu-Braticevici, M. Purcarea, Non-biopsy methods to determine hepatic 
fibrosis. J. Med. Life 2, 401–406 (2009).

	 4.	 P. Bedossa, F. Carrat, Liver biopsy: The best, not the gold standard. J. Hepatol. 50, 1–3 (2009).
	 5.	 A. Regev, M. Berho, L. J. Jeffers, C. Milikowski, E. G. Molina, N. T. Pyrsopoulos, Z. Z. Feng, 

K. R. Reddy, E. R. Schiff, Sampling error and intraobserver variation in liver biopsy 
in patients with chronic HCV infection. Am. J. Gastroenterol. 97, 2614–2618 (2002).

	 6.	 M. E. Rinella, Z. Lominadze, R. Loomba, M. Charlton, B. A. Neuschwander-Tetri, 
S. H. Caldwell, K. Kowdley, S. A. Harrison, Practice patterns in NAFLD and NASH: Real life 
differs from published guidelines. Therap. Adv. Gastroenterol. 9, 4–12 (2016).

	 7.	 M. S. Siddiqui, S. A. Harrison, M. F. Abdelmalek, Q. M. Anstee, P. Bedossa, L. Castera, 
L. Dimick-Santos, S. L. Friedman, K. Greene, D. E. Kleiner, S. Megnien, B. A. Neuschwander-Tetri, 
V. Ratziu, E. Schabel, V. Miller, A. J. Sanyal; Liver Forum Case Definitions Working Group, 
Case definitions for inclusion and analysis of endpoints in clinical trials for nonalcoholic 
steatohepatitis through the lens of regulatory science. Hepatology 67, 2001–2012  
(2018).

	 8.	 FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools). 
Silver Spring (MD): Food and Drug Administration (US); 2016 (2016).

	 9.	 C. Caussy, M. H. Alquiraish, P. Nguyen, C. Hernandez, S. Cepin, L. E. Fortney, V. Ajmera, 
R. Bettencourt, S. Collier, J. Hooker, E. Sy, E. Rizo, L. Richards, C. B. Sirlin, R. Loomba, 
Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold 
standard for the detection of hepatic steatosis. Hepatology 67, 1348–1359 (2018).

	 10.	 P. Kennedy, M. Wagner, L. Castéra, C. W. Hong, C. L. Johnson, C. B. Sirlin, B. Taouli, 
Quantitative elastography methods in liver disease: Current evidence and future 
directions. Radiology 286, 738–763 (2018).

	 11.	 A. E. Feldstein, A. Wieckowska, A. R. Lopez, Y. C. Liu, N. N. Zein, A. J. McCullough, 
Cytokeratin-18 fragment levels as noninvasive biomarkers for nonalcoholic 
steatohepatitis: A multicenter validation study. Hepatology 50, 1072–1078 (2009).

	 12.	 M. Boyle, D. Tiniakos, J. M. Schattenberg, V. Ratziu, E. Bugianessi, S. Petta, C. P. Oliveira, 
O. Govaere, R. Younes, S. McPherson, P. Bedossa, M. J. Nielsen, M. Karsdal, D. Leeming, 
S. Kendrick, Q. M. Anstee, Performance of the PRO-C3 collagen neo-epitope biomarker 
in non-alcoholic fatty liver disease. JHEP Rep. 1, 188–198 (2019).

	 13.	 E. Vilar-Gomez, N. Chalasani, Non-invasive assessment of non-alcoholic fatty liver disease: 
Clinical prediction rules and blood-based biomarkers. J. Hepatol. 68, 305–315 (2018).

	 14.	 H. K. Drescher, S. Weiskirchen, R. Weiskirchen, Current status in testing for Nonalcoholic 
Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Cell 8, 845 (2019).

	 15.	 J. Kryczka, J. Boncela, Proteases revisited: Roles and therapeutic implications in fibrosis. 
Mediators Inflamm. 2017, 1–14 (2017).

	 16.	 T. Houben, Y. Oligschlaeger, T. Hendrikx, A. V. Bitorina, S. M. A. Walenbergh, 
P. J. van Gorp, M. J. J. Gijbels, S. Friedrichs, J. Plat, F. G. Schaap, D. Lütjohann, M. H. Hofker, 
R. Shiri-Sverdlov, Cathepsin D regulates lipid metabolism in murine steatohepatitis. Sci. Rep. 
7, 3494 (2017).

	 17.	 K. Uchimura, M. Hayata, T. Mizumoto, Y. Miyasato, Y. Kakizoe, J. Morinaga, T. Onoue, 
R. Yamazoe, M. Ueda, M. Adachi, T. Miyoshi, N. Shiraishi, W. Ogawa, K. Fukuda, T. Kondo, 
T. Matsumura, E. Araki, K. Tomita, K. Kitamura, The serine protease prostasin regulates 
hepatic insulin sensitivity by modulating TLR4 signalling. Nat. Commun. 5, 3428 (2014).

	 18.	 M. A. Sánchez-Garrido, K. M. Habegger, C. Clemmensen, C. Holleman, T. D. Müller, 
D. Perez-Tilve, P. Li, A. S. Agrawal, B. Finan, D. J. Drucker, M. H. Tschöp, R. D. DiMarchi, 
A. Kharitonenkov, Fibroblast activation protein (FAP) as a novel metabolic target. 
Mol. Metab. 5, 1015–1024 (2016).

	 19.	 E. J. Toonen, A. M. Mirea, C. J. Tack, R. Stienstra, D. B. Ballak, J. A. van Diepen, A. Hijmans, 
T. Chavakis, W. H. Dokter, C. T. Pham, M. G. Netea, C. A. Dinarello, L. A. Joosten, Activation 
of proteinase 3 contributes to Nonalcoholic Fatty Liver Disease and insulin resistance. 
Mol. Med. 22, 202–214 (2016).

	 20.	 S. M. Walenbergh, T. Houben, S. S. Rensen, V. Bieghs, T. Hendrikx, P. J. van Gorp, 
Y. Oligschlaeger, M. L. Jeurissen, M. J. Gijbels, W. A. Buurman, A. C. Vreugdenhil, 
J. W. Greve, J. Plat, M. H. Hofker, S. Kalhan, J. Pihlajamäki, P. Lindsey, G. H. Koek, 
R. Shiri-Sverdlov, Plasma cathepsin D correlates with histological classifications of fatty 
liver disease in adults and responds to intervention. Sci. Rep. 6, 38278 (2016).

	 21.	 W. Ando, H. Yokomori, N. Tsutsui, E. Yamanouchi, Y. Suzuki, M. Oda, Y. Inagaki, K. Otori, 
I. Okazaki, Serum matrix metalloproteinase-1 level represents disease activity as opposed 
to fibrosis in patients with histologically proven nonalcoholic steatohepatitis. Clin. Mol. 
Hepatol. 24, 61–76 (2018).

	 22.	 K. M. Irvine, L. F. Wockner, I. Hoffmann, L. U. Horsfall, K. J. Fagan, V. Bijin, B. Lee, 
A. D. Clouston, G. Lampe, J. E. Connolly, E. E. Powell, Multiplex serum protein analysis 
identifies novel biomarkers of advanced fibrosis in patients with chronic liver disease 
with the potential to improve diagnostic accuracy of established biomarkers. PLOS ONE 
11, e0167001 (2016).

	 23.	 F. D'Amico, M. Consolo, A. Amoroso, E. Skarmoutsou, B. Mauceri, F. Stivala, G. Malaponte, 
G. Bertino, S. Neri, M. C. Mazzarino, Liver immunolocalization and plasma levels of MMP-9 
in non-alcoholic steatohepatitis (NASH) and hepatitis C infection. Acta Histochem. 112, 
474–481 (2010).

	 24.	 H. Toyoda, T. Kumada, S. Kiriyama, M. Tanikawa, Y. Hisanaga, A. Kanamori, T. Tada, 
Y. Murakami, Higher hepatic gene expression and serum levels of matrix 
metalloproteinase-2 are associated with steatohepatitis in non-alcoholic fatty liver 
diseases. Biomarkers 18, 82–87 (2013).

	 25.	 D. Ljumovic, I. Diamantis, A. K. Alegakis, E. A. Kouroumalis, Differential expression 
of matrix metalloproteinases in viral and non-viral chronic liver diseases. Clin. Chim. Acta 
349, 203–211 (2004).

	 26.	 Q. D. Mac, D. V. Mathews, J. A. Kahla, C. M. Stoffers, O. M. Delmas, B. A. Holt, A. B. Adams, 
G. A. Kwong, Non-invasive early detection of acute transplant rejection via nanosensors 
of granzyme B activity. Nat. Biomed. Eng. 3, 281–291 (2019).

	 27.	 J. D. Kirkpatrick, A. D. Warren, A. P. Soleimany, P. M. K. Westcott, J. C. Voog, C. Martin-Alonso, 
H. E. Fleming, T. Tammela, T. Jacks, S. N. Bhatia, Urinary detection of lung cancer in mice 
via noninvasive pulmonary protease profiling. Sci. Transl. Med. 12, eaaw0262 (2020).

	 28.	 G. A. Kwong, J. S. Dudani, E. Carrodeguas, E. V. Mazumdar, S. M. Zekavat, S. N. Bhatia, 
Mathematical framework for activity-based cancer biomarkers. Proc. Natl. Acad. Sci. U.S.A. 
112, 12627–12632 (2015).

	 29.	 G. A. Kwong, G. von Maltzahn, G. Murugappan, O. Abudayyeh, S. Mo, 
I. A. Papayannopoulos, D. Y. Sverdlov, S. B. Liu, A. D. Warren, Y. Popov, D. Schuppan, 
S. N. Bhatia, Mass-encoded synthetic biomarkers for multiplexed urinary monitoring 
of disease. Nat. Biotechnol. 31, 63–70 (2013).

	 30.	 M. Ryaboshapkina, M. Hammar, Human hepatic gene expression signature 
of non-alcoholic fatty liver disease progression, a meta-analysis. Sci. Rep. 7, 12361 (2017).

	 31.	 P. Angulo, D. E. Kleiner, S. Dam-Larsen, L. A. Adams, E. S. Bjornsson, 
P. Charatcharoenwitthaya, P. R. Mills, J. C. Keach, H. D. Lafferty, A. Stahler, S. Haflidadottir, 
F. Bendtsen, Liver fibrosis, but no other histologic features, is associated with long-term 
outcomes of patients With nonalcoholic fatty liver disease. Gastroenterology 149, 
389–397.e10 (2015).

	 32.	 T. Wong, R. J. Wong, R. G. Gish, Diagnostic and treatment implications of nonalcoholic fatty 
liver disease and nonalcoholic steatohepatitis. Gastroenterol. Hepatol. 15, 83–89 (2019).

	 33.	 O. Govaere, S. Cockell, D. Tiniakos, R. Queen, R. Younes, M. Vacca, L. Alexander, F. Ravaioli, 
J. Palmer, S. Petta, J. Boursier, C. Rosso, K. Johnson, K. Wonders, C. P. Day, M. Ekstedt, 
M. Orešič, R. Darlay, H. J. Cordell, F. Marra, A. Vidal-Puig, P. Bedossa, J. M. Schattenberg, 
K. Clément, M. Allison, E. Bugianesi, V. Ratziu, A. K. Daly, Q. M. Anstee, Transcriptomic 
profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures 
for steatohepatitis and fibrosis. Sci. Transl. Med. 12, eaba4448 (2020).

D
ow

nloaded from
 https://w

w
w

.science.org at G
eorgia Institute of T

echnology on O
ctober 20, 2021

http://www.science.org/doi/10.1126/scitranslmed.abe8939
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/scitranslmed.abe8939


Cazanave et al., Sci. Transl. Med. 13, eabe8939 (2021)     20 October 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

13 of 14

	 34.	 K. B. Bang, Y. K. Cho, Comorbidities and metabolic derangement of NAFLD. J. Lifestyle Med. 
5, 7–13 (2015).

	 35.	 V. Pandyarajan, R. G. Gish, N. Alkhouri, M. Noureddin, Screening for nonalcoholic fatty 
liver disease in the primary care clinic. Gastroenterol. Hepatol. 15, 357–365 (2019).

	 36.	 P. J. Eddowes, M. Sasso, M. Allison, E. Tsochatzis, Q. M. Anstee, D. Sheridan, I. N. Guha, 
J. F. Cobbold, J. J. Deeks, V. Paradis, P. Bedossa, P. N. Newsome, accuracy of fibroscan 
controlled attenuation parameter and liver stiffness measurement in assessing steatosis 
and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156, 
1717–1730 (2019).

	 37.	 M. Swierczewska, K. C. Lee, S. Lee, What is the future of PEGylated therapies? Expert Opin. 
Emerg. Drugs 20, 531–536 (2015).

	 38.	 J. S. Dudani, M. Ibrahim, J. Kirkpatrick, A. D. Warren, S. N. Bhatia, Classification of prostate 
cancer using a protease activity nanosensor library. Proc. Natl. Acad. Sci. U.S.A. 115, 
8954–8959 (2018).

	 39.	 M. Matsumoto, N. Hada, Y. Sakamaki, A. Uno, T. Shiga, C. Tanaka, T. Ito, A. Katsume, 
M. Sudoh, An improved mouse model that rapidly develops fibrosis in non-alcoholic 
steatohepatitis. Int. J. Exp. Pathol. 94, 93–103 (2013).

	 40.	 E. M. Brunt, D. E. Kleiner, L. A. Wilson, P. Belt, B. A. Neuschwander-Tetri, N. C. R. Network, 
Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis 
in NAFLD: Distinct clinicopathologic meanings. Hepatology 53, 810–820 (2011).

	 41.	 R. N. Helsley, V. Varadharajan, A. L. Brown, A. D. Gromovsky, R. C. Schugar, 
I. Ramachandiran, K. Fung, M. N. Kabbany, R. Banerjee, C. K. Neumann, C. Finney, 
P. Pathak, D. Orabi, L. J. Osborn, W. Massey, R. Zhang, A. Kadam, B. E. Sansbury, C. Pan, 
J. Sacks, R. G. Lee, R. M. Crooke, M. J. Graham, M. E. Lemieux, V. Gogonea, J. P. Kirwan, 
D. S. Allende, M. Civelek, P. L. Fox, L. L. Rudel, A. J. Lusis, M. Spite, J. M. Brown, 
Obesity-linked suppression of membrane-bound. eLife 8, e49882 (2019).

	 42.	 C. D. Byrne, G. Targher, NAFLD as a driver of chronic kidney disease. J. Hepatol. 72, 
785–801 (2020).

	 43.	 L. J. Stallons, R. M. Whitaker, R. G. Schnellmann, Suppressed mitochondrial biogenesis in 
folic acid-induced acute kidney injury and early fibrosis. Toxicol. Lett. 224, 326–332 (2014).

	 44.	 M. Rabe, F. Schaefer, Non-transgenic mouse models of kidney diseases. Nephron 133, 
53–61 (2016).

	 45.	 K. B. Russ, T. M. Stevens, A. K. Singal, Acute kidney injury in patients with cirrhosis. J. Clin. 
Transl. Hepatol. 3, 195–204 (2015).

	 46.	 K. L. Hudkins, W. Pichaiwong, T. Wietecha, J. Kowalewska, M. C. Banas, M. W. Spencer, 
A. Mühlfeld, M. Koelling, J. W. Pippin, S. J. Shankland, B. Askari, M. E. Rabaglia, M. P. Keller, 
A. D. Attie, C. E. Alpers, BTBR Ob/Ob mutant mice model progressive diabetic 
nephropathy. J. Am. Soc. Nephrol. 21, 1533–1542 (2010).

	 47.	 A. Ericsson, P. Tonelius, M. Lal, A. Sabirsh, G. Böttcher, L. William-Olsson, M. Strömstedt, 
C. Johansson, G. Hyberg, S. Tapani, A. C. Jönsson-Rylander, R. Unwin, The effects of dual 
PPAR/agonism compared with ACE inhibition in the BTBRob/ob mouse model 
of diabetes and diabetic nephropathy. Physiol. Rep. 5, (2017).

	 48.	 D. E. Kleiner, H. R. Makhlouf, Histology of nonalcoholic fatty liver disease and nonalcoholic 
steatohepatitis in adults and children. Clin. Liver Dis. 20, 293–312 (2016).

	 49.	 M. A. T. Han, O. Altayar, S. Hamdeh, V. Takyar, Y. Rotman, O. Etzion, E. Lefebvre, R. Safadi, 
V. Ratziu, L. J. Prokop, M. H. Murad, M. Noureddin, Rates of and factors associated 
with placebo response in trials of pharmacotherapies for nonalcoholic steatohepatitis: 
Systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 17, 616–629.e26 (2019).

	 50.	 K. Patel, S. A. Harrison, M. Elkhashab, J. F. Trotter, R. Herring, S. E. Rojter, Z. Kayali, 
V. W. Wong, S. Greenbloom, S. Jayakumar, M. L. Shiffman, B. Freilich, E. J. Lawitz, 
E. J. Gane, E. Harting, J. Xu, A. N. Billin, C. Chung, C. S. Djedjos, G. M. Subramanian, 
R. P. Myers, M. S. Middleton, M. Rinella, M. Noureddin, Cilofexor, a nonsteroidal FXR 
agonist, in patients with noncirrhotic NASH: A phase 2 randomized controlled trial. 
Hepatology 72, 58–71 (2020).

	 51.	 N. Alkhouri, E. Lawitz, M. Noureddin, R. DeFronzo, G. I. Shulman, GS-0976 (Firsocostat): 
An investigational liver-directed acetyl-CoA carboxylase (ACC) inhibitor for the treatment 
of non-alcoholic steatohepatitis (NASH). Expert Opin. Investig. Drugs 29, 135–141 (2020).

	 52.	 R. Loomba, E. Lawitz, P. S. Mantry, S. Jayakumar, S. H. Caldwell, H. Arnold, A. M. Diehl, 
C. S. Djedjos, L. Han, R. P. Myers, G. M. Subramanian, J. G. McHutchison, Z. D. Goodman, 
N. H. Afdhal, M. R. Charlton; GS-US-384-1497 Investigators, The ASK1 inhibitor selonsertib 
in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology 67, 
549–559 (2017).

	 53.	 P. Dibba, A. A. Li, B. J. Perumpail, N. John, S. Sallam, N. D. Shah, W. Kwong, G. Cholankeril, 
D. Kim, A. Ahmed, Emerging therapeutic targets and experimental drugs 
for the treatment of NAFLD. Diseases 6, 83 (2018).

	 54.	 J. Bates, H. David, Z. Anna, R. B. Grant, T. L. John, L. Henry, L. Kathy, R. B. Saritha Kusam, 
N. David, M. Igor, D. G. Breckenridge, Combination of ASK1 and ACC inhibitors increases 
efficacy in rodent models of NASH. Hepatology 66, 1149–1185 (2017).

	 55.	 J. Bates, K. Liu, D. Hollenback, A. Zagorska, G. Budas, J. T. Liles, H. Liu, S. Kusam, 
R. Brockett, D. Newstrom, I. Mikaelian, T. Wang, A. S. Ray, D. G. Breckenridge, Combination 

of an FXR agonist and an acc inhibitor increases antifibrotic efficacy in rodent models 
of NASH. J. Hepatol. 68, S395–S396 (2018).

	 56.	 J. Bates, S. Nandita, R. Ricardo, L. David, W. Kari, H. David, L. Kathy, Z. Anna, B. Grant, 
L. John, B. Robert, N. David, M. Igor, L. Li, X. Ren, B. David, Hepatic metabolomics 
and plasma MicroRNA analysis of combinations of an ASK1 inhibitor, an ACC inhibitor, 
and an FXR agonist in a rat choline-deficient high fat diet model reveal reductions 
in oxidative stress, inflammation and fibrosis. Hepatology 68, S773A (2018).

	 57.	 N. H. Afdhal, M. Curry, Technology evaluation: A critical step in the clinical utilization 
of novel diagnostic tests for liver fibrosis. J. Hepatol. 46, 543–545 (2007).

	 58.	 E. Roeb, Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 
68-69, 463–473 (2018).

	 59.	 A. Moles, N. Tarrats, J. C. Fernández-Checa, M. Marí, Cathepsins B and D drive hepatic 
stellate cell proliferation and promote their fibrogenic potential. Hepatology 49, 
1297–1307 (2009).

	 60.	 A. Asgharpour, S. C. Cazanave, T. Pacana, M. Seneshaw, R. Vincent, B. A. Banini, 
D. P. Kumar, K. Daita, H. K. Min, F. Mirshahi, P. Bedossa, X. Sun, Y. Hoshida, S. V. Koduru, 
D. Contaifer Jr., U. O. Warncke, D. S. Wijesinghe, A. J. Sanyal, A diet-induced animal model 
of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65, 579–588 (2016).

	 61.	 S. Singh, A. M. Allen, Z. Wang, L. J. Prokop, M. H. Murad, R. Loomba, Fibrosis progression 
in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: A systematic review 
and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643–654.
e641–649; quiz e639–640 (2015).

	 62.	 A. G. Shah, A. Lydecker, K. Murray, B. N. Tetri, M. J. Contos, A. J. Sanyal, N. C. R. Network, 
Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver 
disease. Clin. Gastroenterol. Hepatol. 7, 1104–1112 (2009).

	 63.	 M. H. Veldman-Jones, R. Brant, C. Rooney, C. Geh, H. Emery, C. G. Harbron, M. Wappett, 
A. Sharpe, M. Dymond, J. C. Barrett, E. A. Harrington, G. Marshall, Evaluating robustness 
and sensitivity of the nanostring technologies ncounter platform to enable multiplexed 
gene expression analysis of clinical samples. Cancer Res. 75, 2587–2593 (2015).

	 64.	 P. Bedossa; FLIP Pathology Consortium, Utility and appropriateness of the fatty liver 
inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score 
in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 60, 565–575 
(2014).

Acknowledgments: We thank G. M. Subramanian and R. P. Myers for supporting the 
collaborative effort with Gilead Inc.; GILEAD employees K. Walker, K. Liu, and D. Lopez for 
support with the rat CDAHFD model; P. Bedossa (Liverpat, Paris, France) for technical help with 
histology data analysis; P. Qiu (Georgia Tech, Atlanta, GA) for critical help in computational 
data analysis; A. Mancino from Syneos Health-Inventiv Health (Princeton, NJ) for help in mass 
spectrometry analysis; M. Oudin (Tufts University, MA) for helpful discussions; A. Serer for help 
in GBTS-NASH preparation; and M. Rowe for help in graph editing. Funding: This study was 
supported in part by Small Business Innovation Research grant 4R44DK116635-02 from the 
NIH. G.A.K. holds a Career Award at the Scientific Interface from the Burroughs Wellcome 
Fund. S.B. is an HHMI investigator. R.T.C. was supported by the MGH Research Scholars 
Program. Q.M.A., A.K.D., and O.G. are supported by the EPoS (Elucidating Pathways of 
Steatohepatitis) consortium funded by the Horizon 2020 Framework Program of the European 
Union under grant agreement 634413, the LITMUS (Liver Investigation: Testing Marker Utility 
in Steatohepatitis) consortium funded by the Innovative Medicines Initiative (IMI2) Program of 
the European Union under grant agreement 777377, and the Newcastle NIHR Biomedical 
Research Centre. Q.M.A. and V.R. are European NAFLD Registry investigators. Author 
contributions: S.C.C., A.D.W., E.K.H., S.B., and G.A.K. designed research. S.C.C., A.D.W., F.T., S.S., 
and M.C. performed research. A.Z., J.B., A.N.B., J.T.L., G.R.B., D.G.B., D.T., V.R., A.K.D., O.G., Q.M.A., 
L.G., J.L., R.T.C., and K.E.C. contributed to reagents/analytical tools. S.C.C., A.D.W., M.P. and F.T., 
A.Z., N.G., W.W., S.B., and G.A.K. analyzed data. S.C.C., M.P., F.T., N.G., and G.A.K. wrote the 
paper. All authors revised the manuscript for intellectual content and approved the final draft. 
Competing interests: S.C.C., M.P., F.T., M.C., S.I., and W.W. are all current employees and 
shareholders of Glympse Bio Inc. E.K.H., A.D.W., S.C.C., S.B., and G.A.K are listed as inventors on 
patent applications pertaining to the results of the paper. S.B. is a director at Vertex; is a 
cofounder and consultant at Glympse Bio, Satellite Bio, and Impilo Therapeutics; is a 
consultant for Cristal, Maverick, and Moderna; and receives sponsored research funds from 
Johnson & Johnson. G.A.K. is a cofounder of Glympse Bio and consults for Glympse Bio and 
Satellite Bio. This study could affect his personal financial status. The terms of this 
arrangement have been reviewed and approved by Georgia Tech in accordance with its 
conflict-of-interest policies. A.D.W., S.S., and E.K.H. were employed by Glympse Bio at the time 
of data generation and have equity in Glympse Bio Inc. A.D.W. is also a consultant at Exact 
Sciences Corp and an advisor to Ovation.io Inc. A.Z., J.B., A.N.B., J.T.L., G.R.B., and D.G.B. are all 
current employees and shareholders of GILEAD Science Inc. Q.M.A. reports Research Grant 
Funding: Abbvie, Allergan/Tobira, AstraZeneca, GlaxoSmithKline, Glympse Bio, Novartis 
Pharma AG, Pfizer Ltd., and Vertex. Active Research Collaborations (including research 
collaborations supported through the EU IMI2 LITMUS Consortium): Abbvie, Antaros Medical, 
Allergan/Tobira*, AstraZeneca, BMS, Boehringer Ingelheim International GMBH, Echosens, 

D
ow

nloaded from
 https://w

w
w

.science.org at G
eorgia Institute of T

echnology on O
ctober 20, 2021



Cazanave et al., Sci. Transl. Med. 13, eabe8939 (2021)     20 October 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

14 of 14

Ellegaard Gottingen Minipigs AS, Eli Lilly & Company Ltd., Exalenz Bioscience Ltd., Genfit SA, 
Glympse Bio, GlaxoSmithKline, HistoIndex, Intercept Pharma Europe Ltd., iXscient Ltd., Nordic 
Bioscience, Novartis Pharma AG, Novo Nordisk A/S, One Way Liver Genomics SL, Perspectum 
Diagnostics, Pfizer Ltd., Resoundant, Sanofi-Aventis Deutschland GMBH, SomaLogic Inc., and 
Takeda Pharmaceuticals International SA. Consultancy: 89Bio, Abbott Laboratories, Acuitas 
Medical, Allergan/Tobira, Altimmune, AstraZeneca, Axcella, Blade, BMS, BNN Cardio, Celgene, 
Cirius, CymaBay, EcoR1, E3Bio, Eli Lilly & Company Ltd., Galmed, Genentech, Genfit SA, Gilead, 
Grunthal, HistoIndex, Indalo, Imperial Innovations, Intercept Pharma Europe Ltd., Inventiva, 
IQVIA, Janssen, Madrigal, MedImmune, Metacrine, NewGene, NGMBio, North Sea Therapeutics, 
Novartis, Novo Nordisk A/S, PathAI, Pfizer Ltd., Poxel, ProSciento, Raptor Pharma, Servier, 
Terns, and Viking Therapeutics. Speaker: Abbott Laboratories, Allergan/Tobira, BMS, Clinical 
Care Options, Falk, Fishawack, Genfit SA, Gilead, Integritas Communications, Kenes, and 
MedScape. Royalties: Elsevier Ltd. D.T. received consultation fees from Intercept 
Pharmaceuticals Inc., Allergan plc, Cirius Therapeutics Inc., Alimentiv Inc., and Clinnovate 
Health UK Ltd. and an educational grant from Histoindex Pte. Data and materials 
availability: All data associated with this study are present in the paper or the Supplementary 
Materials. Raw data are available in data file S1. Restrictions over access to raw data may apply 

due to material transfer agreements (MTAs) established between Glympse Bio, Inc. and 
Newcastle University and Gilead Sciences Inc. NanoString data generated in this study from 
liver biopsies of MGH/STM patients have been deposited into the Gene Expression Omnibus 
(GEO) database (GSE163211).

Submitted 22 November 2020
Resubmitted 28 March 2021
Accepted 9 August 2021
Published 20 October 2021
10.1126/scitranslmed.abe8939

Citation: S. C. Cazanave, A. D. Warren, M. Pacula, F. Touti, A. Zagorska, N. Gural, E. K. Huang, 
S. Sherman, M. Cheema, S. Ibarra, J. Bates, A. N. Billin, J. T. Liles, G. R. Budas, D. G. Breckenridge, 
D. Tiniakos, V. Ratziu, A. K. Daly, O. Govaere, Q. M. Anstee, L. Gelrud, J. Luther, R. T. Chung, 
K. E. Corey, W. Winckler, S. Bhatia, G. A. Kwong, Peptide-based urinary monitoring of fibrotic 
nonalcoholic steatohepatitis by mass-barcoded activity-based sensors. Sci. Transl. Med. 13, 
eabe8939 (2021).

D
ow

nloaded from
 https://w

w
w

.science.org at G
eorgia Institute of T

echnology on O
ctober 20, 2021



Use of think article is subject to the Terms of service

Science Translational Medicine (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Translational Medicine is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

Peptide-based urinary monitoring of fibrotic nonalcoholic steatohepatitis by mass-
barcoded activity-based sensors
Sophie C. CazanaveAndrew D. WarrenMaciej PaculaFayçal ToutiAnna ZagorskaNil GuralEric K. HuangSarah
ShermanMehar CheemaSabrina IbarraJamie BatesAndrew N. BillinJohn T. LilesGrant R. BudasDavid G.
BreckenridgeDina TiniakosVlad RatziuAnn K. DalyOlivier GovaereQuentin M. AnsteeLouis GelrudJay LutherRaymond T.
ChungKathleen E. CoreyWendy WincklerSangeeta BhatiaGabriel A. Kwong

Sci. Transl. Med., 13 (616), eabe8939.

A urinary readout of NASH fibrosis
Biopsy-free assessment of nonalcoholic steatohepatitis (NASH) fibrosis is currently lacking. Cazanave et al. showed
that the gene expression of 13 liver proteases is associated with the presence of NASH in human RNA-seq data. They
accordingly developed a set of 19 peptides that release identifiable “barcodes” in the presence of these proteases and
which are readily detectable in urine. Parenteral administration of the peptides to a diet-induced rat model of NASH
allowed discrimination of F2 stage fibrosis from earlier stages. A reduction in liver fibrosis after 1 week of treatment
was also detected in the animals demonstrating that this technique allows preclinical NASH assessment without
heavily invasive techniques.
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