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A comprehensive understanding of the molecular vulnerabilities
of every type of cancer will provide a powerful roadmap to guide
therapeutic approaches. Efforts such as The Cancer Genome Atlas
Project will identify genes with aberrant copy number, sequence,
or expression in various cancer types, providing a survey of the
genes that may have a causal role in cancer. A complementary
approach is to perform systematic loss-of-function studies to
identify essential genes in particular cancer cell types. We have
begun a systematic effort, termed Project Achilles, aimed at
identifying genetic vulnerabilities across large numbers of cancer
cell lines. Here, we report the assessment of the essentiality of
11,194 genes in 102 human cancer cell lines. We show that the
integration of these functional data with information derived
from surveying cancer genomes pinpoints known and previously
undescribed lineage-specific dependencies across a wide spectrum
of cancers. In particular, we found 54 genes that are specifically
essential for the proliferation and viability of ovarian cancer cells
and also amplified in primary tumors or differentially overex-
pressed in ovarian cancer cell lines. One such gene, PAX8, is focally
amplified in 16% of high-grade serous ovarian cancers and
expressed at higher levels in ovarian tumors. Suppression of
PAX8 selectively induces apoptotic cell death of ovarian cancer
cells. These results identify PAX8 as an ovarian lineage-specific
dependency. More generally, these observations demonstrate that
the integration of genome-scale functional and structural studies
provides an efficient path to identify dependencies of specific can-
cer types on particular genes and pathways.
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The application of whole-genome approaches to identify ge-
netic alterations in cancer genomes is providing new insights

into the spectrum of molecular events that occur in human
tumors. Although in some cases this knowledge immediately
illuminates a path toward clinical implementation, the long lists
of genes with aberrant sequence, copy number, or expression in
tumors already found make it clear that complementary in-
formation from systematic functional studies will be essential to
obtain a comprehensive molecular understanding of cancer and
to convert this knowledge into therapeutic strategies.
Most ovarian cancer patients present at an advanced stage

with widely disseminated disease in the peritoneal cavity. Despite
advances in surgery and chemotherapy, the majority of ovarian
cancer patients re-present with relapsed and progressively che-
motherapy-resistant and lethal disease. The Cancer Genome
Atlas (TCGA) Project has characterized nearly 500 primary
high-grade serous ovarian cancer genomes to identify recurrent
genetic alterations in ovarian cancer (1).

A major feature of ovarian cancers is recurrent regions of
copy-number alteration (1). A small number of these recurrent
genomic events harbor known oncogenes and tumor suppressor
genes, such as MYC, CCNE1, and RB (2). However, as in other
cancers, the specific genes out of the ∼1,800 genes targeted by
recurrent amplification events remain undefined. Here, we re-
port a genome-scale functional study to identify genes that are
essential for the survival of 102 human cancer cell lines. The
interrogation of a large number of cancer cell lines provides
increased power to identify relationships between gene expres-
sion and dependence. To demonstrate the utility of integrating
these data with results from cancer genome characterization, we
focused on ovarian cancer and identified ovarian cancer lineage-
specific dependencies.

Results
To identify genes essential for the proliferation and survival of
human cancer cell lines, we performed genome-scale, pooled
short hairpin RNA (shRNA) screens (3) in 102 cell lines (Fig. 1A
and Fig. S1A), including 25 ovarian, 18 colon, 13 pancreatic, 9
esophageal, 8 non-small-cell lung cancer (NSCLC), and 6 glio-
blastoma cancer cell lines (Table S1). Each cell line was infected
in quadruplicate (Fig. S2A) with a pool of lentivirally delivered
shRNAs, composed of 54,020 shRNAs targeting 11,194 genes,
and propagated for at least 16 doublings. The abundance of
shRNA sequences at the endpoint relative to the initial reference
pool was measured by microarray hybridization. We developed
a standardized analytical pipeline to assess the effects on pro-
liferation induced by each shRNA (Figs. S1B and S2 B and C).
Replicate infections were highly correlated (Fig. S2 D and E),
and hierarchical clustering demonstrated that the replicates
clustered tightly together (Fig. 1B). In all, we obtained 22 million
individual measurements of shRNA effects on proliferation.
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To ensure that the pooled screening process accurately mea-
sured the activity of the shRNAs, we individually retested 350
shRNAs, chosen to sample the full range of array measurements
obtained in a pooled screen in OVCAR-8 cells, by performing
competition assays (Fig. 1C and Fig. S3). Specifically, we cloned
these shRNAs into a modified pLKO.1 viral vector that coex-
presses GFP and used these vectors to introduce shRNAs into
∼50% of an OVCAR-8 cell population. We then monitored the
proportion of GFP-expressing cells over time to measure the
effects of each shRNA on proliferation. The percent depletion of
the shRNAs in the individual pairwise competition tests was
correlated to the log(fold depletion) of these shRNA in the
pooled screen (R2 = 0.58; Fig. 1C and Table S2). We note that
shRNAs that show the largest degree of depletion in the pooled
screen exhibited more variability as would be expected at the
limit of signal detection. These two correlated assessments were
made at different time points, further confirming that they pro-
vide robust measures of the intrinsic proliferation effects of the
individual shRNAs.

Correlation of Genetic Dependency with Properties of Cell Lines. We
then sought to understand how the vulnerabilities of cancer cell
lines relate to various properties, such as mutations in a specific
gene, disruption of a specific pathway, or inclusion in a specific
lineage. Because human cancer cell lines are genetically and
epigenetically diverse, the analysis of a large number of cell lines
ensures that the relationships between cell properties and the
dependence of those cells on specific genes are not particular to
one context. We tested whether this large dataset permits reli-
able inferences about the genetic vulnerability of cancers pos-
sessing specific properties. For each cell line classification, we
used a class-discrimination feature selection method called the
“weight of evidence” (WoE) statistic (4, 5) to rank shRNAs by
their ability to distinguish the specified classes.

Dependencies of Cell Lines with Oncogenic Mutations. We first ex-
amined vulnerabilities of cell lines with KRAS or BRAF muta-
tions. We defined “essential” genes by three complementary
methods, including (i) WoE rank of the top shRNA targeting

each gene, (ii) WoE rank of the top two shRNAs targeting each
gene, or (iii) a composite score of WoE ranks for all shRNAs for
each gene using the Kolmogorov–Smirnov (KS) statistic (3). The
KRAS and BRAF genes themselves were ranked highly by all
three methods (Fig. 2 A and D). The top scoring KRAS- and
BRAF-specific shRNAs significantly discriminated between the
mutant and wild-type classes (P = 1.89 × 10−5 and 1.89 × 10−4,
respectively, WoE; Fig. 2 B and E).
Interestingly, because 7/10 BRAF-mutant cell lines were de-

rived from nonmelanoma lineages (including 5 from colon can-
cer), these observations suggest that cancer cell lines that harbor
mutant BRAF exhibit a similar dependence on BRAF. Although
initial reports suggest that clinical responses to BRAF inhibition
in BRAF-mutant colon tumors are much less robust than those
observed in BRAF-mutant melanomas (6), our observations in-
dicate that BRAF is essential in colon cancer cell lines that ex-
press mutant BRAF (Fig. S4 A and B).
We next examined vulnerabilities in cell lines harboring

PIK3CA mutations. PIK3CA itself strongly scored as a top dif-
ferentially essential gene between PIK3CA mutant and PIK3CA
wild-type cell lines in 2/3 gene-level analyses (Fig. 2 G and H).
MTOR ranked highly in 2/3 analyses (23rd and 30th of 11,194;
Fig. S4C); the top scoring MTOR-specific shRNA strongly dis-
criminated the PIK3CA mutant and wild-type classes (P= 6.03 ×
10−4, WoE; Fig. S4D), indicating that cell lines that harbor
PIK3CA mutations are also dependent on mTOR. These ob-
servations confirm prior work showing that mTOR plays an
important role in PI3K signaling (7).
To assess how the number of cell lines analyzed affected these

analyses, we repeated our WoE scoring of a set of shRNAs using
data from smaller numbers of cell lines subsampled from the
entire dataset. For the top scoring KRAS, BRAF, and PIK3CA
shRNAs that were able to distinguish cell lines with mutant or
wild-type alleles of these same respective genes, we found that
the analysis of a smaller number of cell lines (<5) decreased the
likelihood of discriminating between these two classes, whereas
the comparison of groups composed of >10 cell lines greatly
increased our ability to distinguish the two classes (Fig. 2 C, F,
and I). We concluded that the analysis of a large number of cell
lines overcomes the inherent heterogeneity of cell lines and
reveals robust relationships between essentiality and particular
cell features that persist across different genetic and epigenetic
backgrounds. With this foundation, we undertook a preliminary
exploration of what can be learned about genetic vulnerabilities
of cancer cells with specific properties.

Lineage-Specific Genetic Dependencies. We hypothesized that a
subset of genes showing enhanced dependencies in specific lin-
eages would also be aberrantly activated in tumors due to am-
plification or overexpression. Recent studies have identified
oncogenic transcription factors that are amplified, overexpressed,
and essential in subsets of tumors from cancers of specific line-
ages, including NKX2-1 in lung adenocarcinoma (8), MITF in
melanoma (9), and SOX2 in squamous cell carcinomas (10). To
identify lineage-specific dependencies, we ranked shRNAs by
their ability to discriminate cell lines of one lineage from cell
lines from all other lineages (Fig. 3A). We selected the top 150
genes (1.3% of those screened) based on ranking of the top-
ranked shRNAs, the top 300 genes (2.7%) by the second-best
ranking shRNAs, and the top 300 genes (2.7%) as assessed by the
KS statistic (ref. 3; Table S3). Three categories of essential genes
were considered for further analysis: (i) genes scoring by all three
methods from individual lineage analyses; (ii) genes scoring by
any method that also were amplified in primary tumors (essential
and amplified; Table S3); and (iii) genes scoring by any method
that also were differentially up-regulated in cell lines derived
from that lineage (essential and overexpressed; Tables S3 and
S4). An overview of these results from analyses performed across
six cancer lineages is displayed in Table S5.
In colon cancer cell lines, we found KRAS, CTNNB1, and BRAF

among 23 essential genes that scored by all three methods and

Fig. 1. Genome-scale RNAi screening identifies essential genes in 102 can-
cer cell lines. (A) Chart showing the number of cell lines from different lin-
eages screened. (B) Unsupervised hierarchical clustering of the shRNA
hybridization data obtained from quadruplicate screens of 102 cancer cell
lines (various colors) and the shRNA plasmid DNA reference pool (15 repli-
cates). A representative portion of the dendrogram is depicted at higher
magnification. (C) The relative abundance 7 d after infection of OVCAR-8
cells infected with 350 individual shRNAs encoded in a GFP+ plasmid (y axis)
correlates with the relative abundance (log2 fold change) of each shRNA
measured in the pooled shRNA screen by microarray hybridization (x axis).
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found KRAS and IGF1R (11) among 35 essential and amplified
genes. In pancreatic cancer cell lines, we identified KRAS among
23 essential genes that scored in all three analyses (Table S5). In
NSCLC, we found NKX2-1 as the only essential gene that is both
amplified and overexpressed and found CDK6 among 7 essential
and amplified genes (8). These observations provide evidence that
such integrative lineage analyses identify both known oncogenes
and other relevant lineage-restricted dependencies.
In addition, we identified a number of particularly interesting,

previously undescribed candidate lineage-specific dependencies.
For example, we found MAP2K4, an activator of JNK and p38
(12), among 10 genes that showed selective essentiality and ex-
pression in NSCLC. We foundMYB (13) and AXIN2 (14) among
9 genes that were essential and differentially expressed in colon
cancer, and we identified SOX9 (15) among 18 genes in pan-
creatic cancer that emerged as lineage-specific dependencies
nominated by all three gene-scoring methods.
To extend these observations, we selected the ovarian lineage

for deeper analysis. Of the 582 genes (5.2%) nominated as
candidates for enhanced dependency in ovarian cancer cells, we
identified 22 essential genes that scored in all three analytical
methods (Fig. 3B and Table S5) and found 5 essential and

overexpressed genes (Tables S4 and S5). TCGA identified 1,825
genes residing on recurrently amplified regions in ovarian
tumors, and we identified 50 amplified genes as also essential
(Fig. 3B and Table S5). The set of amplified and essential genes
included the known oncogene CCNE1 (16) and candidates in-
cluding the FRS2 adaptor protein (17), the PRKCE protein ki-
nase (18), RPTOR (19), and the PAX8 paired box transcription
factor. Similarly to NKX2-1 in NSCLC, MITF in melanoma, and
MYB in colon cancer, PAX8 was not only essential and amplified
but also overexpressed in a lineage-specific manner.

Characterization of PAX8 Dependency in Ovarian Cancer. PAX8 was
the only gene that was (i) identified as an essential gene in all
three scoring methods, (ii) amplified in primary high-grade se-
rous ovarian tumors, and (iii) differentially expressed in ovarian
cancer cell lines (Table S5). Cell line subsampling analysis
revealed that the large number of ovarian cell lines screened
enabled the identification of this previously undescribed de-
pendency (Fig. 3C).
PAX8 is a lineage-restricted transcription factor that plays an

essential role in organogenesis of the Müllerian system (20), the
thyroid, and the kidney (21). PAX8 was previously found to be

Fig. 2. Dependencies of cell lines with mutations in KRAS, BRAF, or PIK3CA. (A, D, and G) Distribution of shRNA ranks (x axis) by the WoE scores (y axis) for
the class comparisons of KRAS mutant (mut) vs. KRAS wild-type (wt) cell lines (A), BRAF mutant vs. BRAF wt (D), and PIK3CA mutant vs. PIK3CA wt (G). shRNAs
targeting KRAS, BRAF, and PIK3CA are highlighted in red, and their ranks are listed. Insets report the gene ranks of KRAS, BRAF, and PIK3CA for differential
essentiality in the subset of cell lines with activating mutations in those respective genes. (B, E, and H) KRAS (B), BRAF (E), or PIK3CA (H) mutation status
(mutant lines in green, wt lines in gray) correlates strongly with depletion of shRNAs targeting these genes. (Lower) Heatmaps report KRAS- (B), BRAF- (E),
and PIK3CA-shRNA (H) fold depletion in each cell line. (C, F, and I) Subsets of the 102 cell lines were analyzed to assess convergence of the gene dependency
results for the KRAS (C), BRAF (F), and PIK3CA (I) mutant vs. wt class comparison analyses as a function of the number of cell lines tested. Distributions of the
scores of the top KRAS, BRAF, and PIK3CA hit shRNAs (given as the percentile of their depletion rankings, with a smaller percentage corresponding to more
depleted, y axis) in the respective cell line class comparisons (using WoE) are shown for each of 100 trials, subsampling the indicated numbers of cell lines in
each class (mutant and wt). The red bar indicates the median value for each group of subsamplings, boxes represent the 25th to 75th percentile of the data,
and whiskers extend to the most extreme values of the group that are not considered outliers.
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overexpressed in ovarian cancers (22) and implicated in follicular
thyroid cancer development (23). We observed that PAX8 was
the most differentially expressed gene when we compared ovarian
cell lines to all of the other cancer cell lines (Fig. 4A). Further-
more, we found that PAX8 was amplified in 16% of primary
ovarian tumors [log2(copy number ratio) > 0.3; n = 345] in a
peak (2q13) that also contains PSD4 and LOC654433 (Fig. 4B).
We further examined the relationships among PAX8 amplifi-

cation, PAX8 expression, and dependence on PAX8 in ovarian
cancer cells. The PAX8-specific shRNA that scored 7th out of
54,020 shRNAs and the 2nd-ranking PAX8 shRNA both sup-
pressed PAX8 (Fig. S4E). The sensitivity of cell lines to in-
hibition by the highest ranked PAX8-specific shRNA correlated
with the level of PAX8 expression, based on comparison of cell
lines with high vs. low PAX8 levels (P = 2.14 × 10−8, t test; Fig.
4C). Cell lines expressing high levels of PAX8 included the vast
majority (21/25) of ovarian cancer cell lines as well as a renal and
an endometrial cancer line. These observations suggested that
the expression of PAX8 is selectively required for the pro-
liferation/survival of cell lines expressing PAX8.
To confirm these findings, we introduced two distinct shRNAs

targeting PAX8 into 17 cell lines. We found that suppression of
PAX8 resulted in a >50% reduction in the viability in six of eight
ovarian cancer cell lines (Fig. 4D), but failed to affect the pro-
liferation of immortalized human ovarian surface epithelial cells
(IOSE-T80; ref. 24) and eight other cell lines that did not express
PAX8 (Fig. 4E). The six sensitive ovarian cell lines included
three cell lines with amplification of 2q13 in which the PAX8
locus resides (Fig. S4F) and three additional cell lines that ex-
press higher levels of PAX8 protein compared with IOSE-T80

cells (Fig. 4D). Suppression of PAX8 induced apoptosis in these
ovarian cancer cell lines (Fig. 4F). In contrast, the two cell lines
(COV504 and OV-90) least sensitive to PAX8 suppression did
not harbor the 2q13 amplification and expressed relatively low
levels of PAX8 (Fig. 4D). These observations suggest that PAX8
represents a lineage-specific essential gene in a significant subset
of ovarian cancer.

Discussion
The integrated analysis of functional dependencies and alter-
ations in cancer genomes presented herein identified potential
targets in ovarian, lung, colon, glioblastoma, pancreatic, and
esophageal cancers. Among these candidate genes, we identified
known oncogenes and lineage-specific dependencies as well as
previously undescribed candidates, including the PAX8 tran-
scription factor in ovarian cancer. Although shRNA screens
performed in small numbers of cell lines have identified essential
genes in specific contexts, the interrogation of genes across
a large number of human cancer cell lines through Project
Achilles provides a substantially more robust assessment of gene
dependence and overcomes confounding effects due to the in-
herent heterogeneity of human cancer cell lines. These datasets
will enable a wide range of analyses to connect particular cancer
genotypes to dependencies.
As an initial approach, we elected to explore dependencies

harbored by a majority of ovarian cancers. We pinpointed 5
genes displaying enhanced essentiality in ovarian cancer and
differential overexpression in ovarian cell lines and 50 genes
displaying enhanced essentiality in ovarian cancer and amplifi-
cation in ovarian tumors. Further studies will be necessary to

Fig. 3. Lineage-specific dependencies. (A) Heatmap of differentially antiproliferative shRNAs in cell lines from individual cancer lineages in comparison with all
others. The top 20 shRNAs that distinguish each lineage from the others are displayed. (B) Ovarian-specific dependencies. Three complementary methods of gene
scoring [ranking by (i) best or (ii) second best scoring shRNA or (iii) composite of all shRNAs for the gene using a KS statistic identified 582 (5.2%) genes that were
selectively required for ovarian cancer cell proliferation. Fifty of these were among the 1,825 recurrently amplified genes in primary high-grade serous ovarian
tumors (1). Among the 200 genes that were differentially overexpressed in ovarian cancer cell lines, 114 genes were included in the shRNA pool, and 5 genes showed
enhanced essentiality in ovarian cancer lines. Twenty-two of these genes that were scored by all three gene-scoring methods were considered as high-confidence
essential genes. (C) Distributions of the scores of PAX8 shRNA (given as the percentile of their rankings, y axis) after 100 trials of the ovarian vs. nonovarian WoE
comparison, for equal class sizes of 1–25 (x axis; colors indicate PAX8 shRNAs 1–5). The red bar indicates the median value for each group of subsamplings, boxes
represent the 25th to 75th percentile of the data, and whiskers extend to the most extreme values of the group that are not considered outliers.
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extend the preliminary findings for these ovarian cancer de-
pendencies. A single gene, PAX8, emerged from every one of
these analyses. Our subsequent experiments confirmed PAX8
to be a lineage-specific survival gene that is essential for pro-
liferation of ovarian cancer cells, highly expressed in ovarian
cancer lines, and amplified in a substantial fraction of primary
ovarian tumors.
PAX8 has been shown to play an essential role in the normal

development of the thyroid gland (21) and female genital tract
(20). The thyroid gland in Pax8-deficient mice is completely
devoid of thyroid hormone-producing follicular cells and exhibits
severe growth retardation within a week after birth (21). Thy-
roxine substitution enables Pax8-deficient mice to survive to
adulthood (20). However, these mice are infertile because of the
absence of uterus and vaginal openings (20), indicating that Pax8
is also essential for the development of the Müllerian duct. In the
reproductive tract, PAX8 expression is restricted to secretory
cells of the fallopian tube epithelium (22), which recent reports
suggest represent a cell of origin for serous ovarian cancer (25).
These findings suggest that PAX8 plays critical roles both in
normal development of female genital tract and in high-grade
serous ovarian tumors.
A number of genes involved in the differentiation programs for

specific tissue lineages are amplified in cancers that arise from
these tissues. For example, NKX2-1 (8),MITF (9), and SOX2 (10)

are amplified and essential for the survival of significant subsets of
NSCLC, melanoma, and squamous cell carcinomas, respectively.
Our results show that PAX8 belongs to this distinct class of
lineage-survival genes that are required for both normal de-
velopment of specific tissues and for cancer cell proliferation/
survival. Although different subtypes of ovarian cancer are likely
to harbor distinct profiles of genetic alterations (2), our findings
suggest that for most ovarian cancer cell lines, PAX8-driven
transcription programs transiently active during normal de-
velopment are coopted to maintain the malignant state.
Epithelial ovarian cancers have been classified into four major

subtypes based on histology: serous, clear cell, endometrioid, and
mucinous (2). These major subtypes show morphologic features
that resemble those of the epithelia of the reproductive tract
derived from the Müllerian duct (2). Previous studies using im-
munohistochemistry showed that 89–100% of serous, clear cell,
and endometrioid subtypes and 8% of mucinous subtype express
PAX8 (26). The majority of the ovarian cancer cell lines that we
screened (20/25) belong to the serous subtype or had a mixed
morphology. A larger collection of cancer cell lines will facilitate
a deeper investigation of ovarian cancer subtypes.
Given the genetic heterogeneity of cancer, screening large

numbers of cell lines is required to have sufficient statistical power
to extract known and novel relationships and provide adequate
representation of individual sublineage classes. Although the

Fig. 4. PAX8 is essential for ovarian cancer cell proliferation and survival. (A) PAX8 is the top-ranked differentially expressed gene between ovarian and
nonovarian cancer cell lines. Arrow indicates PAX8. (B) SNP array colorgrams depict genomic amplification of PAX8 in primary high-grade serous ovarian
cancers (1). Regions of genomic amplification and deletion are denoted in red and blue, respectively. SNP array profiles derived from primary ovarian tumors
were sorted based on the degree of amplification of each gene. Black vertical lines denote the boundaries of the PAX8 gene. (C) Boxplot showing significant
difference in the degree of depletion of a PAX8-specific shRNA in 63 cell lines with low levels of PAX8 compared with 20 lines with high levels of PAX8 (P =
2.14 × 10−8, t test). Cell lines were divided into high- and low-expressing groups. The red line indicates the median value for each group, boxes represent the
25th to 75th percentile of the data, and whiskers extend to the most extreme values of the group that are not considered outliers. Ovarian cancer cell lines are
plotted with red circles; cell lines from all other lineages are plotted with green circles. (D Upper) Effects of PAX8 suppression on proliferation in eight ovarian
cancer cell lines; dotted line indicates 50% relative proliferation. (Lower) Immunoblot of PAX8 in a panel of eight ovarian cancer cell lines and in immortalized
IOSE-T80 cells. Cell lines with amplification of 2q13 (log2 copy number ratio > 0.3) are marked in red. * denotes nonspecific band. (E Upper) Effects of PAX8
suppression on proliferation of cell lines from indicated cancer types. (Lower) Immunoblot of PAX8. Error bars indicate SD of six replicate measurements.
(F) Immunoblot of poly(ADP-ribose) polymerase after PAX8 suppression in two 2q13-amplified cell lines. * denotes nonspecific band.
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classification of cell lines based on a single characteristic is un-
likely to segregate cell lines into homogenous groups, our obser-
vations indicate that by including many cell line representatives
of each class of interest, it is still possible to discover underlying
relationships between genotype or lineage and essential genes.
Integration of these data with information from the analyses of
structural alterations in cancer genomes will further facilitate
the systematic identification of genes critical to oncogenesis.
The approach described here can be extended to enable sys-

tematic interrogation of codependences beyond those analyzed
here, including synthetic lethal relationships with activated
oncogenes or inactivated tumor suppressor genes (27). Analyses
of dependencies of cell lines with particular characteristics have
the potential to discover novel targets, for example, by in-
tegrating the output of these types of screens with information
emerging from the cataloging of mutations and other alterations
in cancer genomes.
More generally, as large-scale efforts to characterize cancer

genomes accelerate, these observations illustrate a path to
functionally characterize the genes found to be altered in tumors
and to identify the subset of such genes critical to cancer initi-
ation and maintenance. To this end, we have made this dataset
available (www.broadinstitute.org/igp) and will update the Pro-
ject Achilles database as more data are obtained. Beyond the
specific findings reported herein, we anticipate that this dataset
will prove useful to identify correlations between genetic features
and essential genes in human cancer cell lines.

Materials and Methods
Pooled shRNA Screening. Lentiviral pLKO.1- shRNA constructs were obtained
from the RNAi Consortium, and the human 54K pool of 54,020 shRNA
plasmids was assembled by combining 16 normalized subpools of ∼3400
shRNA plasmids. The list of 54,020 shRNAs can be found at http://www.
broadinstitute.org/igp. Genome-scale pooled shRNA screens to identify
genes essential for proliferation in 102 cancer cell lines were performed (3)
using a lentivirally delivered pool of 54,020 shRNAs targeting 11,194 genes.
The culture conditions for all cancer cell lines are listed in Table S1. Each cell
line was infected in quadruplicate and propagated for at least 16 population
doublings. The abundance of shRNA constructs relative to the initial DNA
plasmid pool was measured by microarray hybridization (3) and analyzed by

using a uniform pipeline. Detailed descriptions of each procedure can be
found in SI Methods.

Data Processing, Class Comparison, and Gene Ranking. Raw .CEL files from
custom Affymetrix barcode arrays were processed with a modified version of
dCHIP software (3). The GenePattern modules shRNAscores and Normal-
izeCellLines were used to calculate the log fold change in shRNA abundances
for each cell line at the conclusion of the screening relative to the initial
plasmid DNA reference pool and to normalize these depletion values by
using peak median absolute deviation normalization, a variation of Z score
with median absolute deviation (3). Class definition files (.cls) were made by
using the GenePattern module SubsetGctandCls; definitions included cell
line lineage (e.g., ovarian cancer, NSCLC, etc.) or genetic alterations (28, 29).
To compute the statistical evidence that a given shRNA contributes to the
observed essentiality phenotype between two classes of interest, we used
a WoE approach (4, 5). The GENE-E program (http://www.broadinstitute.org/
cancer/software/GENE-E; ref. 3) was used to collapse shRNAscores to gene
rankings by three complementary methods. These methods included (i)
ranking genes by their highest shRNA depletion score, (ii) ranking genes
based on the P value rank (correcting for different set sizes of shRNA tar-
geting different genes) of their second best ranked shRNA, and (iii) ranking
genes using a KS statistic in an approach similar to gene set enrichment
analysis (RNAi gene enrichment ranking; ref. 3). Detailed descriptions of
each procedure can be found in SI Methods. All data files, accessory files,
and GenePattern modules can be found through the Integrative Genomics
Portal (http://www.broadinstitute.org/igp).

Competition Assay. OVCAR-8 (5 × 104) cells were seeded into each well of
a 96-well plate and spin-infected with 2 or 4 μL of lentiviruses (in duplicate)
at 930 × g for 2 h at 30 °C in the presence of 4 μg/mL polybrene to transduce
∼50% of the cells. Cells were then trypsinized and replated into 24-well
plates. The percent of GFP+ cells at 3 and 7 d after infection was measured
using BD LSR II flow cytometry system equipped with a high-throughput
sampler (BD Biosciences). The fraction of GFP+ cells 7 d after infection rel-
ative to 3 d after infection was calculated. Data represent mean ± SD of
duplicate infections.
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SI Materials and Methods
Cell Culture and Fingerprinting of Cell Lines. The culture conditions
for all cancer cell lines are listed in Table S1. To verify the
identity of each cell line, Sequenom genotyping assays for
a panel of 48 SNP loci were performed on genomic DNA iso-
lated from each replicate of cell lines at the conclusion of the
screen at the Broad Institute Genetic Analysis Platform. A ref-
erence “fingerprint” containing 33 of these loci for each cell line
was derived from Affymetrix 6.0 array data (http://www.
broadinstitute.org/ccle) or prescreen Sequenom genotyping.

Construction of Pooled shRNA Library. The human 54K pool of
54,020 shRNA plasmids from the RNAi Consortium was as-
sembled by combining 16 normalized subpools of ∼3,400 shRNA
plasmids each. Each subpool was used to transform ElectroMAX
DH5α-E cells (Invitrogen) by electroporation and plated onto
five 24 × 24-cm2 bioassay dishes (Nunc). DNA was purified from
the plated transformants by using a HiSpeed Plasmid Maxi Kit
(Qiagen). These subpools were then combined to create the 54K
shRNA pool. Then, 2 μg of this pool was used to transform
DH5α cells and plated onto 50 24 × 24-cm2 bioassay dishes.
DNA was purified from the plated transformants and used for
virus production. A complete list of shRNAs along with unique
TRCN identifiers is publicly available (http://www.broadinstitute.
org/rnai/public/).

Virus Pool Production, Infection, and Cell Propagation. Production of
lentivirus from the 54K shRNA pool was performed as described
(1). A single batch of ∼5 L of virus was aliquoted and frozen at
−80 °C for all infections.
Infections were performed as described (1) with the following

modifications. To determine viral volume that would produce
a multiplicity of infection (MOI) of 0.3–0.5 for each cell line,
cells were infected with a titration of six different volumes (0–400
μL) of virus and cultured in the presence or absence of puro-
mycin. Before large-scale infection, cells were filtered through
a 40-μm cell strainer (BD Falcon). For each of the quadruplicate
infections, 3.7 × 107 cells were resuspended in 24 mL of medium
containing 4 μg/mL polybrene, and the appropriate volume of
54K library lentiviruses was added. This mixture was seeded into
a 12-well plate at ∼2 mL per well. A spin infection was per-
formed by centrifugation at 930 × g for 2 h at 30 °C.
For suspension cells, supernatants were gently aspirated off

after infection, and fresh medium was added to the 12-well plates.
After 20 h, the 12 wells from each replicate infection were pooled,
and the combined cells were transferred into a T175-flask con-
taining 200 mL of medium containing puromycin. At 4 d after
selection, for each of the four replicates, 2 × 107 cells were plated
into a new T175-flask and cultured in 200 mL of medium con-
taining puromycin. For all subsequent passages, 1.1 × 107 cells
per replicate were carried over. The remaining cells for all pas-
sages were collected, resuspended in 1 mL of PBS, and stored at
−20 °C for genomic DNA isolation.
For adherent cells, supernatants were gently aspirated off after

spin infection, and fresh medium was added to the 12-well plates.
After 20 h the 12 wells from each replicate were trypsinized, and
cells combined and plated in two T225-flasks containing 60 mL of
medium containing puromycin. Passaging for each cell line was
continued for at least 16 population doublings or 28 d, whichever
was longer. Puromycin selection was maintained for the entire
experiment.

In-Line Infection Calculation. At 20 h after large-scale infection,
a small fraction of cells (1.5–3 × 105) from each replicate were
plated into each well of six-well plates in the presence or absence
of puromycin. Control wells with 100% uninfected cells were
included to verify complete puromycin killing of uninfected cells.
Ninety-six hours later, viable cells were counted using trypan
blue staining. The infection rate was determined by calculating
the number of viable cells selected in puromycin divided by the
number of viable cells without puromycin selection. Screening
continued only when the infection rates were within the range of
30–65% to provide an MOI = 1 and to yield a sufficient number
of cells to provide adequate shRNA representation.

Genomic DNA Isolation and Array Hybridization. Genomic DNA
isolation, half-hairpin barcode production, and array hybridiza-
tion were performed as described (1). For PCR amplification of
shRNA sequences, minimum of 50 μg of genomic DNA was used
as template for each replicate. Therefore, multiple PCR re-
actions were performed, each using 3 μg of genomic DNA per
50 μL reaction volume.

Quality Control of Hybridization. Scans of each array were visually
inspected to detect spatial irregularities or hybridization profiles
with signal out of the linear range. Such aberrant array hybrid-
ization data were discarded. Interreplicate agreement for ex-
perimental replicates of each cell line was assessed from their
MvA plots using the GenePattern module MvAplots, which
defines the interquartile range (IQR) value for each pairwise
comparison of replicates of a cell line. Replicate pairs that have
a calculated IQR value of <1.2 were retained for analysis. To
confirm that experimental replicates derived from the same cell
line exhibited very small discrepancies compared with intercell
line differences, we performed unsupervised hierarchical clus-
tering with a Pearson correlation. Replicates that failed to tightly
cluster with each other were discarded. The arrays were also
filtered based on the relative difference between the distribution
of human and mouse probes in the raw data for each array.
Arrays with <30% of human probes with signal above the mouse
probe signal were removed. Any line with less than three repli-
cates passing any QC measure was also removed.

Data Preprocessing for Custom TRC shRNA Arrays. Raw .CEL files
from custom Affymetrix barcode arrays were processed with
a modified version of dCHIP software (1). “Barcode” array type,
“average” model method, and fifth percentile of region (PM-
only) background selection were used as parameters. “Running
median” and “All probes” were chosen as parameters for nor-
malization, and data were logged before further analysis.

shRNA Scoring. After data preprocessing, the GenePattern mod-
ules “RNAigctconverter” and “MakeArrayInfo” were used to
convert preprocessed data into a .gct file and make a file of array
annotations, respectively. Then the module “shRNAscores” was
used to collapse values derived from replicate measurements of
the abundance of each shRNA in the initial DNA pool in
comparison with its abundance at the completion of replicate
experiments performed on each cell line using an adjusted log
fold change score. The log fold change score is the difference in
means between replicates of the cell line of interest and repli-
cates of the initial DNA pool. This score was adjusted to de-
emphasize shRNAs that showed high variability among rep-
licates of the DNA pool, which likely arises from technical
artifacts including shRNA underrepresentation in the initial
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DNA pool or suboptimal array probe performance. To penalize
these variable scores, we divided the log fold change score by the
SD of the DNA pool after it had been mean centered at 1 and
floored at 1. The log fold change scores of the least variable
shRNAs from reference measurements were unaltered and the
scores of the most variable shRNAs were penalized proportional
to the SD of their replicate measurements from the reference
pool. This adjusted log fold change score was used for sub-
sequent processing.

Scaling and Centering Data Ranges. To normalize the shRNA de-
pletion values between cell lines, the distribution of adjusted log
fold change scores of each line was scaled and centered with peak
median absolute deviation (PMAD) normalization, a variation of
Z score with median absolute deviation (1), using the Gene-
Pattern module “NormalizeCellLines.” PMAD normalization
first centers the shRNAscores per cell line at 0, by subtracting the
value of each shRNA from the modeled peak value of the dis-
tribution of each cell line. The peak value was obtained by taking
the maximum value of the Gaussian smoothed, kernel density
estimate of the distribution. The shRNAscores for each cell line
were then rescaled so that each line had similar data ranges by
dividing the centered data for each shRNA by the median ab-
solute deviation (MAD) of the shRNAs for each cell line.

Class Definitions. Comparisons of PMAD normalized shRNA
relative abundance data were based on behavior of shRNAs
within a class or differential behavior of shRNAs between classes
of cell lines. Class definitions used included cell line lineage (e.g.,
ovarian cancer, NSCLC, etc.) or genetic alterations (KRAS,
BRAF, or PIK3CA mutation) (2, 3). Class definition files (.cls)
were made using the GenePattern module “SubsetGctandCls.”

Scoring shRNAs by Class Comparisons. To compute the statistical
evidence that a given shRNA contributes to the observed es-
sentiality phenotype between two classes of interest, we used
a weight of evidence (WoE) approach. This approach computes
the likelihood that a given shRNA has the ability to discriminate
between the two classes of interest in a statistically significant
manner. Weights of evidence scores for a particular class com-
parison, as defined by a class definition file, were calculated using
the GenePattern module “ScorebyClassComp.” The probability
that any given shRNA can provide this discrimination is inferred
from its posterior log-odds ratio:

Evðrj xÞ ¼ log
Pðr ¼ ClassAj x ¼ XiÞ=Pðr ¼ ClassBj x ¼ XiÞ

Pðr ¼ ClassAÞ=Pðr ¼ ClassBÞ ; [1]

where r is a binary variable and is either ClassA or ClassB, x is
a single shRNA measurement, and Xi is the shRNA level score
for that shRNA.
The total evidence that the shRNA level scores provide can be

computed as the average absolute evidence (AvEv):

AvEvðrj xÞ ¼ ∑
k

i
Pðx ¼ XiÞjEvðrj x ¼ XiÞj; [2]

where the sum is over all of the k distinct shRNAscores Xi.
To compute the conditional probabilities, we used a logistic

regression model because the set of Xi shRNA level measure-
ments is a continuous distribution. The logistic regression model
that approximates the conditional probability is:

Pðrj xÞ ¼ 1
1þ e− ðAþBxÞ: [3]

A generalized linear model fit identified the values of the coef-
ficients A and B so as to be able to compute the conditional

probabilities in each cell line in each class. Because our primary
focus was to identify shRNAs that were depleted in abundance,
we rankedAvEv scores by their effects frommost negative tomost
positive. Therefore, we used a signed AvEv from the value of
coefficient B (sign(B)AvEv), preferentially ranking shRNAs from
the most negative to the most positive WoE. In this manner, we
identified shRNAs with the most discriminatory power among
two classes as well as the shRNAs that were depleted in the
particular class of interest (e.g., KRAS mutant). One advantage
of this approach is that it does not assume that the shRNAscores
are normally distributed within each class, an assumption that is
central to other metrics of differential assessment including
t tests and signal-to-noise ratios.

Data Files and GenePattern Modules. A portal with data files, ac-
cessory files, and GenePattern modules for reproducing the
analysis to produce shRNAscores can be found on the Integrative
Genomics portal (http://www.broadinstitute.org/IGP). Ranked
shRNA and gene lists for all of the analyses presented in this
paper can also be found there.

Subsampling Analysis. A group of 124 shRNAs, including control
shRNAs and shRNAs targeting KRAS, BRAF, PIK3CA, and
PAX8, as well as other genes, were used for an analysis of class
size. WoE comparisons ofKRASmutant vs.WT, BRAFmutant vs.
WT, PIK3CA mutant vs. WT, and ovarian vs. non-ovarian lines
were performed for these shRNAs. Every comparison was per-
formed on 100 random subsets of cell lines taken from each class,
for a range of equal class sizes (1 vs. 1, 2 vs. 2, etc.) from 1 to
number of cell lines screened in each target class (1–26 for KRAS,
1–10 for BRAF, 1–12 for PIK3CA, and 1–25 for Ovarian). Per-
centile of shRNA rank (shRNA rank divided by the total number
of tested shRNAs, multiplied by 100) for shRNAs specific for
KRAS (TRCN0000033262), BRAF (TRCN0000006291), PIK3CA
(TRCN0000039607), and PAX8 (see Plasmids) from the KRAS,
BRAF, PIK3CA, and ovarian subsampled comparisons, respec-
tively, were plotted as grouped boxplots by target class size.

Collapsing shRNAScores to Gene Rankings. The GENE-E program
(http://www.broadinstitute.org/cancer/software/GENE-E) (1) was
used to collapse shRNA differential essentiality scores to gene
rankings by three complementary methods. These methods in-
cluded (i) ranking genes by their highest shRNA depletion score,
(ii) ranking genes based on the P value rank of their second best
ranked shRNA, and (iii) ranking genes using a KS statistic in an
approach similar to gene set enrichment analysis (RNAi gene
enrichment ranking) for scoring genes based on the P value rank
of the normalized enrichment scores (NES; ref. 1). The NES
represents the bias of the set of shRNAs targeting each gene
toward the phenotype of interest, for example, depletion in
KRAS mutant lines.
Themajority of the 11,194 genes were represented by 5 shRNAs

(range 2–31 shRNAs per gene, excluding control shRNAs). Out
of the initial 54,020 shRNAs in the pool, 979 shRNAs were ex-
cluded from the gene rankings because they contained overlapp-
ing sequence (offset of less than 3 base pairs) with another shRNA
construct for the same gene. Nine additional shRNAs, repre-
senting 9 genes, were removed automatically by GENE-E, before
gene ranking analysis. Control shRNAs target GFP, RFP, Lucif-
erase, and LacZ, and each control shRNA is represented as 5
replicate measurements on the microarray.
To assess the significance of a gene score obtained by the

second best or KS scoring methods described, P values were
computed based on 10,000 random samplings of shRNAs to
create artificial genes with the same number of shRNAs as the
gene of interest (correcting for different set sizes of shRNA
targeting different genes). The P value reflects the number of
times such an artificially constructed gene received a score as
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good as or better than the gene of interest. Therefore, the
smaller the P value, the less likely such a gene score could have
been obtained at random.
On average, 58% of the shRNA suppress the given target

>70% using qPCR measurements of endogenous transcript
levels (The RNAi Consortium); thus, a simple average of
shRNAscores is not ideal because not all shRNAs are effective.
Because the single shRNA and second best shRNA methods
depend only on the 1–2 shRNAs of strongest effect, the influence
of ineffective shRNAs on gene scores is minimized. The KS
statistic however considers all shRNAs from each gene in pro-
ducing a gene score. It is thus more sensitive to cases for example
in which all five shRNAs score moderately for depletion. Be-
cause a higher false positive rate with the single shRNA ranking
method is predicted due to off-target effects, only the top 150
genes identified by this method were selected for further analy-
sis, whereas the top 300 genes from each of the other two
methods were selected. A union was taken of the genes identi-
fied by these three methods.

Competition Assay.Of the 350 shRNA retested, 238 shRNAs were
selected to represent a range of fold depletion in OVCAR-8 and
OVCAR-4 cells, including shRNAs ranking from #1–19, #101–
120, #501–525, #1,001–1,025, #5,001–5,025, #10,001–10,025,
and #20,001–20,020). In addition, 112 shRNAs targeting 25
oncogenes or control genes were included. The 350 shRNAs are
listed in Table S2. OVCAR-8 (5 × 104) cells were seeded into
each well of a 96-well plate and spin-infected with 2 or 4 μL of
lentiviruses (in duplicate) at 930 × g for 2 h at 30 °C in the
presence of 4 μg/mL polybrene to transduce ∼50% of the cells.
Cells were then trypsinized and replated into 24-well plates. The
percent of GFP+ cells at 3 and 7 d postinfection was measured
using BD LSR II flow cytometry system equipped with a high-
throughput sampler (BD Biosciences). The fraction of GFP+
cells 7 d postinfection relative to 3 d postinfection was calcu-
lated. Data represent mean ± SD of duplicate infections.

Analysis of Primary Tumor Data. Regions of copy number ampli-
fication identified by Genomic Identification of Significant Tar-
gets in Cancer analyses were used from publications focused on
various tumor lineages, including ovarian (4), NSCLC/lung ad-
enocarcinoma (5), glioblastoma (6), colorectal, and esophageal
squamous cancers (7). When necessary, coordinates were changed
to hg18. Regions in the colon and esophageal squamous lineages
were manually reviewed for segmentation artifacts; potential
artifacts were removed. For all lineages, all RefSeq genes within
the regions of amplification were identified and cross referenced
with genes interrogated in the screening library. All primary
high-grade serous ovarian cancer data were downloaded from
the TCGA portal (http://tcga-data.nci.nih.gov/tcga). The fre-
quency of amplification for PAX8 genes was determined by using
a threshold of log2 copy number ratio > 0.3 within a subset of
tumors in TCGA project (345 tumors). Screenshots of the same
tumor data were taken using the Integrative Genome Viewer
(http://www.broadinstitute.org/igv).

Differential Expression Analysis. Expression analyses were per-
formed on cell lines with gene expression data available (n = 83;

http://www.broadinstitute.org/ccle). For every lineage with more
than 6 lines with available expression data, Comparative Marker
Selection was performed in GenePattern. The top 200 differ-
entially overexpressed genes for each lineage compared with all
other lineages were identified using a SNR. Significance testing
of shRNAscores between high and low PAX8 expressing lines
was done with a t test (n = 83, mean PAX8 expression dividing
high and low classes).

Plasmids. To generate a plasmid coexpressing shRNA and GFP,
aGFP cDNA fragment was cloned into the BamHI andKpnI sites
of pLKO.1-puro-shRNA to replace the puromycin resistance
gene. A pool of 85 control shRNAs targeting reporter genes
(GFP, RFP, Luciferase, and LacZ) was used to generate control
lentiviruses (Control shRNAs) (1). The sequences targeted by
PAX8-specific shRNAs are as follows:

TRCN0000021274 (shPAX8#3: 5′-CCTTCGCCATAAAGC-
AGGAAA-3′),
TRCN0000021275 (shPAX8#5: 5′-GCAACCATTCAACCT-
CCCTAT-3′),
TRCN0000021276 (shPAX8#4: 5′-CTCTTTATCTAGCTCC-
GCCTT-3′),
TRCN0000021277 (shPAX8#2: 5′-CCCAGTGTCAGCTCC-
ATTAAT-3′)
and TRCN0000021278 (shPAX8#1: 5′-CCGACTAAGCAT-
TGACTCACA-3′).

Cell Proliferation Assay.Cells were seeded into each well of 96-well
plates (Costar) 24 h before infection. Six replicate infections were
performed for control shRNAs and each PAX8-specific shRNA in
the presence of 4 μg/mL polybrene for 24 h. After the incubation,
medium was replaced with fresh medium with triplicates con-
taining 2 μg/mL puromycin, and cells were cultured for 5 d. The
ATP content was measured using CellTiter-Glo luminescent cell
viability assay (Promega). Data represent mean + SD of six
replicate infections relative to infection with control shRNAs.

Immunoblotting.Cell lysates were prepared by scraping cells in lysis
buffer [50 mM Tris HCl (pH 8), 150 mMNaCl, 1% Nonidet P-40,
0.5% sodium deoxycholate, and 0.1% SDS] containing 1×
Complete protease inhibitors (Roche) and phosphatase inhibitors
(10 mM sodium fluoride and 5 mM sodium orthovanadate).
Protein concentration was measured using BCA Protein Assay kit
(Pierce). An equal amount of protein (30 μg) was separated by
NuPAGE Novex Bis-Tris 4–12% gradient gels (Invitrogen) and
then transferred onto a poly(vinylidene difluoride) membrane
(Amersham) using a Bio-Rad electrophoretic tank blotting ap-
paratus. The membrane was then incubated with primary anti-
body for 1 h at room temperature. Antibody against PAX8 (sc-
81353) was purchased from Santa Cruz Biotechnology. Antibody
against poly(ADP-ribose) polymerase (#9532) was purchased
from Cell Signaling Technology. After incubation with the ap-
propriate horseradish peroxidase-linked secondary antibodies
(Bio-Rad), signals were visualized by enhanced chemiluminescence
plus Western blotting detection reagents (Amersham). β-actin was
also assessed as an internal loading control by using a specific
antibody (sc-8432-HRP, Santa Cruz).

1. Luo B, et al. (2008) Highly parallel identification of essential genes in cancer cells. Proc
Natl Acad Sci USA 105:20380–20385.

2. Thomas RK, et al. (2007) High-throughput oncogene mutation profiling in human
cancer. Nat Genet 39:347–351.

3. Forbes SA, et al. (2008) The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr
Protoc Hum Genet 57:10.11.1–10.11.26.

4. TCGA-Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature, in
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5. Weir BA, et al. (2007) Characterizing the cancer genome in lung adenocarcinoma.
Nature 450:893–898.

6. Cancer Genome Atlas Research Network (2008) Comprehensive genomic character-
ization defines human glioblastoma genes and core pathways. Nature 455:1061–1068.
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Fig. S1. Overviews of pooled screening and analytical pipelines. (A) We developed a streamlined, standardized process for cell line assay development (blue
boxes), infection (green oval), and passaging (green boxes) to minimize variations in handling and culture conditions. Several quality control steps were
implemented at different stages within the process (yellow boxes). All cell lines have a known reference 48 SNP Sequenom genotype before initiating the
screen. Thawed cells were tested for the presence of mycoplasma by PCR before screening. Mycoplasma contaminated cell lines were cultured in the presence
of 10 μg/mL ciprofloxacin for 2 weeks followed by 2 weeks of culture in standard growth medium. Cell lines that passed the mycoplasma PCR retest were
allowed to reenter the screening pipeline. The cells used for shRNA lentiviral pool infections are parallel “sibling” cultures of those cells used for assay de-
velopment. Puromycin sensitivity was determined by treating infected and uninfected cells with puromycin doses ranging from 0 to 10 μg/mL. Infection ti-
tration was performed over a range of 0–400 μL of virus per well of a 12-well plate using the same protocol as a large-scale infection (see SI Methods for
details). After large-scale infection, an in-line measurement of infection rate was calculated by dividing the number of viable cells after puromycin selection
over number of viable cells without puromycin selection. Infection rates between 30–65% were deemed acceptable for screening, and cell lines with infection
rates outside this range were reoptimized. Cells were passaged for 16 population doublings or 28 d (whichever was longer) using a standardized passaging
protocol. Genomic DNA from the final cell harvest was isolated, and cell line identity was confirmed by SNP genotyping and comparison with reference
genotypes. Virally integrated shRNA sequences were PCR-amplified from genomic DNA, and products were hybridized to a custom microarray to determine
the representation of shRNAs. The quality of the hybridization was assessed by examining probe distribution histograms. Replicate reproducibility was de-
termined by examining both MvA plots and hierarchical clustering dendrograms. Outlier samples with respect to hybridization intensity distribution or rep-
licate reproducibility were reevaluated starting from genomic DNA (see SI Methods for details). Three or four high-quality replicates were obtained for each of
102 cell lines screened. (B) Analysis pipeline. A schematic showing the analytic pipeline created to process pooled RNAi screening data. Raw array data (.CEL
files) were first processed with a modified version of dCHIP (1). The rest of the pipeline used GenePattern modules designed to take in the dCHIP normalized
array measurements (“RNAigctconverter”) and produce shRNA-level data (“shRNAscores,” “NormalizeCellLines”), then calculate a WoE score for each shRNA
that measures a differential effect based upon a class comparison (“SubsetGctandCls,” ScorebyClassComp”). The GENE-E program was used to take the ranked
differential shRNAscores between two classes and collapse to gene-level data.
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Fig. S2. Replicate number, normalization, and replicate reproducibility. (A) Published data (1) from 10 replicate infections of Jurkat cells were used to assess
the minimum number of replicates required to generate an accurate list of shRNAscores and ranks. The log fold change of shRNA abundance in Jurkat late time
point replicates relative to the initial reference plasmid DNA pool replicates were computed. The top 250 most depleted shRNAs in the 10-replicate set were
identified. Randomly chosen subsets of replicates with replicate sizes of 2, 3, 4, 6, or 8 out of the 10 replicates were selected, and analysis was performed to
determine the frequency at which the top 250 shRNAs from the 10-replicate set appeared within the top 1,000 ranked shRNAs in the smaller replicate set. The
percent identification was averaged across the 10 subsampled datasets for each replicate size, where 100% identification indicates an ideal list identical to the
list of shRNAs obtained in the 10-replicate set. The boxes represent the 25th to 75th percentile of the data, and whiskers extend to the extremes. The 4-
replicate set was observed to accurately identify these top scoring constructs at high frequency. (B and C) Peak median absolute deviation (PMAD) normal-
ization. The probability density (y axis) was plotted for the adjusted log2 fold change scores (x axis) of each cell line (colored by line) before (B) and after (C)
PMAD normalization. PMAD normalization was performed by subtracting the value of each shRNA from the modeled peak value of the distribution of each
cell line and dividing by the median absolute deviation of each line. (D and E) Replicate reproducibility. (D) MvA plots for four unnormalized replicates of EFO-
27. For each pair of replicates, the difference between replicate values for log2 fold change of signal (y axis) is plotted against the average of log2 signal for
those two replicates (x axis) (these plots shown in matrix positions above the diagonal). In addition, median and interquartile range (IQR) for the interreplicate
differences in log2 fold change signal values are reported for each pairwise comparison (in corresponding matrix positions below the diagonal). Values for both
IQR and median close to zero represent tightly clustered arrays. (E) The observed range of cell-line averaged IQR values across cell lines are displayed for early
time point replicates (5 d postinfection), late time point replicates, and a generated set of artificial “outlier” replicates. The outlier IQR values were generated
by combining three cell line replicates with a mismatched replicate from a different cell line. These artificial four-replicate sets thus model the expected
distribution of IQR values in the case that one of the four chip replicates is a dramatic outlier. The red line in each box-plot is the median value for the group;
boxes represent the 25th to 75th percentile of the data, and whiskers span the extremes.

1. Luo B, et al. (2008) Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 105:20380–20385.
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Fig. S3. Evaluation of different shRNA pooled screen scoring methods against individual shRNA proliferation tests. (A) Experimental schematic. OVCAR-8 cells
were infected with each of the 350 shRNAs to transduce ∼50% of the cells. Percentage of GFP+ cells 3 and 7 d postinfection was measured by FACS. (B and C)
The relative abundance of OVCAR-8 cells infected with 350 individual shRNAs encoded in a GFP+ plasmid (y axis, relative to 3 d post infection) measured at 7 d
post infection are plotted against the relative abundance of each shRNA in the pooled shRNA screen as quantified by different two different functions of the
microarray hybridization data. Correlation plots are shown for log2 fold change (R2 = 0.58) (B) and signal-to-noise ratio (R2 = 0.33) (C). Based on these results,
log2 fold change was selected as the basis for a shRNA scoring method for all subsequent analyses.
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Fig. S4. Identification of essential genes in BRAF mutant, PIK3CA mutant, or 2q13-amplified cancer cell lines. (A) Identification of essential genes in BRAF
mutant colon cancer cells. Distribution of shRNA ranks (x axis) by the WoE scores (y axis) for the class comparison of 5 BRAF mutant vs. 10 BRAF wild-type colon
cancer cell lines only. shRNAs targeting BRAF are marked in red and their ranks are listed. Inset reports the gene ranks of BRAF for preferential proliferation-
essentiality in the subset of cell lines with activating mutations in BRAF. (B) BRAF-shRNA depletion values correlate with BRAF mutation. Heatmap shows the
fold depletion of a BRAF-shRNA (TRCN0000006291) in individual cell lines, sorted from most to least depleted. Mutation status is indicated in the top bar;
mutant lines are in green, wild-type lines in gray. (C and D) Dependence onMTOR in PIK3CA mutant cancer cell lines. (C) Distribution of shRNA ranks (x axis) by
the WoE scores (y axis) for the class comparisons of PIK3CA mutant vs. PIK3CA wild-type cell lines. shRNAs targeting MTOR are marked in red and their ranks
are listed. Inset reports the gene rank of MTOR for preferential proliferation-essentiality in the subset of cell lines with activating mutations of PIK3CA. (D)
MTOR-specific shRNA depletion values correlate with PIK3CA mutation status. Heatmap shows the fold depletion of the top-scoring MTOR-specific shRNA
(TRCN0000038677) in individual cell lines, sorted from the most to least depleted. Mutation status of PIK3CA is indicated in the left bar; mutant lines are in
green, wild-type lines in gray. (E) Validation of target gene suppression by PAX8-specific shRNAs. Immunoblot confirmed target gene suppression by top-
scoring PAX8-specific shRNAs. OVCAR-4 cells were infected with a control shRNA targeting GFP or PAX8-targeting shRNAs, and cell lysates were collected
4 d after infection for immunoblotting. Two effective shRNAs, labeled in red, were further tested for their proliferation effects in a panel of ovarian cancer cell
lines in Fig. 4. (F) Amplification of PAX8 (2q13) in ovarian cancer cell lines. SNP array colorgram depicts genomic amplification of PAX8. Regions of genomic
amplification and deletion are denoted in red and blue, respectively. Black vertical lines denote the boundaries of PAX8 gene. Ovarian cancer cell lines are
labeled in red if they harbor amplification of PAX8 (log2 copy number ratio > 0.3).
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