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BACKGROUND: When cancer is detected at the
earliest stages, treatment is more effective and
survival drastically improves. Yet ~50% of can-
cers are still only detected at an advanced stage.
Improved earlier detection of cancer could sub-
stantially increase survival rates. Although re-
cent advances in early detection have saved
lives, further innovations and development of
early cancer detection approaches are needed.
The field is evolving rapidly, owing to advances
in biological understanding and an increasing
pace of technological progress.

ADVANCES:Wehighlight five challenges facing
the field, currentwork in those areas, andwhere
more research is needed to make early detec-
tion a reality. The first challenge is to build a
greater understanding of the biology and
behavior of early disease. This will help iden-
tify ways to distinguish between consequen-
tial, aggressive lesions and inconsequential
lesions that will not cause harm. Such in-
sight will be crucial to realizing the potential
for early detection to inform treatment deci-
sions and improve survival, while minimizing
the risk of overtreatment. Alongside studies in
human samples, better models of disease are
enabling identification of early signals of tu-
morigenesis and clarifying the contributions
of the immune system andmicroenvironment
to tumor development.

The second challenge is determining the
risk of developing cancer. How can we use
germline genomic susceptibility, family his-
tory, exposures, demographic, and behavioral
data to build nuanced risk models to identify
who should be tested for cancer and how test
results should be interpreted and followed
up? Progress is being made to address this
challenge through improved understanding
of the genomics of cancer risk, integration
of that insight with other risk factors, and
the development of large-scale population
cohorts where risk models can be developed
and validated.
The third challenge is finding and validat-

ing biomarkers of early cancer. There is con-
siderable difficulty in finding accurate signals
of early cancer (which usually exist in very
small amounts) amid the noise of normal hu-
man physiology. Although progress has his-
torically been slow, many promising early
detection markers are emerging, including cir-
culating tumor DNA, circulating tumor cells,
proteins, exosomes, and cancer metabolites.
Advances in data analysis methodologies (such
as machine learning) and integration across
marker types in multimodal tests are also ac-
celerating progress.
The fourth challenge is technological. It in-

volves both the iterative improvement of ex-
isting approaches and the development of

disruptive detection technologies that can
very sensitively and specifically identify early
biological changes, whether in tissue struc-
ture, biochemistry, or function. Powerful mo-
lecular analytical technologies and advanced
imaging and histopathological methods are
increasing the ability to sensitively find earlier
tumors, while the use of synthetic markers
may help to amplify their signal.
The fifth challenge is how to appropriately

evaluate early detection approaches. Transla-
tion of biological insights into new diagnostic
technologies and execution of clinical trials
to validate those advances require substantial
time and money. We discuss ways in which
that process might be improved.

OUTLOOK: For early detection to deliver trans-
formative progress in cancer survival, wider
skill sets beyond cancer biology are essential,
including engineers, chemists, physicists, tech-
nology developers, and behavioral and com-
puter scientists. Integrated, interdisciplinary
collaboration is key to bringing new ideas to
address the challenges of early cancer detec-
tion. We believe that early detection of cancer
is approaching a tipping point, as biological
insight and technological capacity are increas-
ing at an unprecedented rate and as public
and private funders of research are increas-
ingly willing to invest. This Review discusses
the current state of the field and suggests con-
structive ways forward that build on current
progress to deliver effective earlier detection of
cancer and appropriate intervention. ▪
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Challenge 3
Finding and validating 
cancer detection 
biomarkers

Challenge 5
Evaluating early 
detection 
approaches

Challenge 1
Understanding the 
biology and prognosis 
of early cancer

•Develop new models
•Explore the 
   microenvironment
•Determine consequentiality
   of changes

Challenge 2
Determining the risk 
of developing cancer

Challenge 4
Developing accurate 
technologies for early 
detection

•Identify risk factors
•Develop integrated risk
   models
•Use risk to target
   screening

•Understand markers in
   biological context
•Validate in appropriate
   populations
•Analyze and integrate with
   appropriate methods

•New technology to
   amplify signal
•Minimize invasiveness
   of test
•Continuous monitoring

•Appropriate, 
  progressive trial design
  (surrogate end points?)
•Understand results in
  real-world context

? ? ?

The early detection of cancer—challenges and ways forward. This figure summarizes challenges that impede the early detection of cancer and the areas of
current research that are helping to overcome them.
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Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced stage
when diagnosed. Early detection of cancer or precancerous change allows early intervention to try to
slow or prevent cancer development and lethality. To achieve early detection of all cancers, numerous
challenges must be overcome. It is vital to better understand who is at greatest risk of developing
cancer. We also need to elucidate the biology and trajectory of precancer and early cancer to identify
consequential disease that requires intervention. Insights must be translated into sensitive and
specific early detection technologies and be appropriately evaluated to support practical clinical
implementation. Interdisciplinary collaboration is key; advances in technology and biological understanding
highlight that it is time to accelerate early detection research and transform cancer survival.

C
ancer is amajor global public health prob-
lem; there were 10 million deaths from
cancer worldwide in 2020 (1). It is the
second leading cause of death globally,
causing one in six deaths (2). For nearly

all cancers, the chances of survival increase sig-
nificantly if the disease is detected, diagnosed,
and treated at an early stage (3) (Fig. 1).
Early detection aims to identify consequential

cancer or precancerous change at the earliest
time point at which intervention could improve
survival or reduce morbidity. Consequential
disease will cause mortality or substantial mor-
biditywithin the individual’s expected remaining
life span. Early detection can take place across

several windows during the transition from
normal cellular activity to dysregulation to
cancer; this includes not only detecting can-
cer itself at an earlier point in its development
but also detecting precursor changes (Fig. 2).
Screening,whichproactively tests asymptomatic
people, constitutes a subset of early detection
measures. Many of the principles of early de-
tection interact with other points in cancer
care, such as detection of minimal residual dis-
ease or disease recurrence (Fig. 2). This Review
focuses on early detection of primary cancers

and precancerous changes in the context of
both screening and symptomatic detection.
Early cancer detection research and develop-

ment have produced tremendous health bene-
fits, for example, through established screening
approaches for cervical, breast, and colorectal
cancers, which are now diagnosed less fre-
quently at later stages than cancers without
established screening (4) (Fig. 1). But many
cancers, such as esophageal, pancreatic, and
ovarian cancers, are still often diagnosed at
advanced stages, when prognosis is extreme-
ly poor.
Although early detection confers survival

advantages in all populations, ~70% of can-
cer deaths occur in low- and middle-income
countries (2), often with late diagnosis. For
example, the rate of late-stage breast cancer
diagnosis in Black sub-Saharan African women
remained well above 60% from the 1970s to
2011, whereas in the US, that rate of late diag-
nosis decreased from ~60% to 32% in Black
women over the same period (5). Some can-
cers that have effective early detection tests,
such as cervical cancer, have much higher mor-
tality rates in low human development index
(HDI) countries compared with highHDI coun-
tries (19.8 versus 3.1 deaths per 100,000, respec-
tively), whereas other cancers without effective
early detection tests differ less (e.g., stomach
cancer, 5.0 versus 4.0 deaths per 100,000, re-
spectively). Late-stage detection of cancer is a
global problem that is exacerbated in resource-
poor settings, demonstrating that equity is a
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Fig. 1. Patients survive longer when cancer is detected at an early stage. Five-year survival data for
bowel, breast, lung, ovarian, and esophageal cancers and melanoma by stage of diagnosis from (A) Public
Health England (140) and (B) the US Surveillance, Epidemiology, and End Results (SEER) database
(https://seer.cancer.gov). (C) Data from the International Agency for Research on Cancer (IARC; https://survcan.
iarc.fr/indexsurvcan1.php) shows 5-year survival by stage of diagnosis for colon and breast cancers in Asian
countries. (D) International comparison [International Cancer Benchmarking Partnership (ICBP) data;
https://gco.iarc.fr/survival/survmark] across countries for 5-year survival of colon cancer shows similar
trends in percentages of patients surviving early-stage disease versus late-stage disease.
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considerable challenge (6–8). Patients diag-
nosed with later-stage cancer can miss the
window for curative intervention, and expen-
sive later-stage systemic treatments are often
associated with severe side effects and worse
outcomes (Fig. 1). Further research to build on
early detection successes and extend these into
other cancer types could transform patient
outcomes.
The challenges facing early detection re-

search fall into five broad categories. First,
understanding the biology of early cancer:
What should we look for, and, once found,
how can we know which early lesions will pro-
gress to become aggressive, consequential dis-
ease versus indolent, inconsequential disease?
Second, determining risk: There are substan-
tial challenges in knowing which populations
or individuals are at greater risk of developing
cancer and therefore in deciding who should be
tested and how tests should be interpreted and
acted on. Third, finding and validating biomark-
ers: Early tumors areminiscule—discovering
sensitive markers of their presence and ro-
bustly validating them presents an archetypal
needle-in-a-haystack challenge. Fourth, devel-
oping accurate technologies: there is a con-
siderable challenge in developing technologies
that are sensitive enough to detect markers
of early cancers and specific enough to avoid
false alarms or overtreatment for inconsequen-
tial disease. Fifth, evaluating early detection

approaches appropriately: The ultimate chal-
lenge is to robustly demonstrate that a new
early detection approach can indeed detect
cancers early and ultimately save lives. The rela-
tive scarcity of cancer in the general popula-
tion canmake this a difficult, prolonged, and
extremely expensive process.
There is a general need for accurate early

detection technologies that address the issues
of cost, access and scaling, public acceptance of
testing, and integration of diagnostics with
public health infrastructure anddecision-making.
The point-of-care tools and privacy-compliant
telehealth solutions that have emerged to meet
the COVID-19 pandemic crisis may also help
advance the implementation of early cancer
detection. Early detection approaches must
address, rather than exacerbate, health in-
equities and must achieve a positive balance
of benefit to harm (through overdiagnosis, un-
necessary invasive follow-up, and overtreatment
for inconsequential disease). In this Review,
we describe the diverse research challenges
and propose ways of achieving early detection
of cancer.

Challenge 1: Understanding the biology
of early cancer

There is a continuum in tumorigenesis from
normal to dysregulated to cancerous. A key chal-
lenge is to understand this biology so that we
can predict the future trajectory of the changes

we detect and determine when early disease
becomes consequential and/or lethal.

The cancer continuum and transition to lethality

Cancer evolves from early inconsequential dys-
regulation in molecular and cellular pheno-
types, to malignant transformation where
critical changes in a cell’s genome or epigenome
culminate in a hallmark series of abnormal
features that define cancer, to potentially lethal
invasion and metastasis and ongoing cellular
evolution and diversification (9). Windows of
opportunity, as well as challenges, for cancer
detection exist across this continuum (Fig. 2).
The transition rate through these stages de-
pends on the cancer type, therefore, under-
standing this timeline can help pinpoint the
optimal time for detection and intervention.
Annual screening may not detect fast, ag-

gressive cancers that develop between screen-
ing visits (10). Conversely, slow-growing cancers
undergoing malignant transition over sev-
eral years can be tracked with active surveil-
lance and screening of at-risk populations.
Some cancers follow a clear path from precur-
sor condition to malignancy, such as polyps
preceding colon cancer. However, not all pre-
cursors will progress to cancer, and not all
cancers will be consequential. For example, the
precancerous condition monoclonal gammo-
pathy of undetermined significance (MGUS)
has an average risk of developing intomultiple
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Fig. 2. Windows for early detection across the course of cancer progression. Cancer evolves through various stages, offering multiple windows for early
detection. Detection at each stage presents different information and choices, with the consequences of detection dependent on the level of information provided by
the subsequent test(s) and the level of certainty around whether the disease will be consequential.
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myeloma (a lethal cancer) of only 1% per year
(11), and the risk of Barrett’s esophagus de-
veloping into esophageal cancer is ~0.3% per
year (12). We do not fully understand which
lesions will progress to consequential disease
and which will not.
What confers lethality and its timing? A

cancer can theoretically be traced, by means
of a phylogenetic tree, back to a single cell.
This single cell arises from a specific set of con-
ditions, including the tissuemicroenvironment
and the immune system. Each organ system
presents a different environment, with some
mutations causing a potentially lethal tumor
in one organ context but not another (13). The
picture also changes within individuals as a
result of aging. A tumor-permissive environ-
ment can be created by cellular andmolecular
changes in noncancerous cells during aging,
such as biophysical alterations in the extra-
cellular matrix, changes in secreted factors,
and changes in the immune system (14). What
are the transitions leading to that initial can-
cer cell and then the changes that engender a
consequential tumor, both within the cell and
its interactions with its microenvironment?
The early evolution of most cancers cannot
easily be observed in people owing to clinical
presentation at advanced disease stages and
tissue sampling difficulties when monitoring
precancers. Blood cancers are an exception,
where the ease of blood sampling has allowed
better understanding of clonal hematopoiesis
(15). For example, all multiple myelomas will
have progressed from MGUS. Chromosomal
and other mutational changes can be moni-
tored in MGUS patients and may highlight
patients who are progressing from MGUS to
smoldering myeloma to malignant multiple
myeloma (16). Clinical trials suggest that pa-
tients who undergo early detection of MGUS
progression may benefit from therapeutic
intervention at the stage of smoldering mye-
loma rather than waiting for symptomatic
malignant myeloma with end-organ damage
(17). This demonstrates how detection and
molecular stratification of a preneoplastic
lesion (Fig. 2) can trigger intervention before
clinically observed definite malignancy. Given
that not all patients presenting with multiple
myeloma will have a prior clinical diagnosis of
MGUS,monitoring changes inMGUS patients
will not catch every case, although it does give
a paradigm to study and exploit the biology of
transition from precancer to cancer.
The transition from a normal state to cancer

is also affected by a cell’s microenvironment.
The microenvironment includes host immune
cells, mesenchymal support cells, vascular cells,
extracellular matrix, and secreted proteins
and exists in various states of hypoxia and pH.
The microenvironment surrounding a would-
be tumor cell can contribute to tumor progres-
sion, determining whether that cell remains

localized or spreads aggressively. An early tu-
mor may also induce detectable changes in its
microenvironment, generating potential bio-
markers for detection.
The immune system is a crucial regulator

and indicator of the initiation and progression
of early tumors (18). For example, the spatial
positioning of tumor-infiltrating leukocytes
with regard to the tumor can, in some cancer
types, indicate how invasive a tumor is (19),
and leukocyte-based biomarkers may be used
to identify residual disease after therapy or to
predict response to therapies (20). However, it
is becoming clear that immune cells or their
products may themselves be useful for early
detection (21). As discussed in the Challenge 3
section below, the very small size of the earliest
tumors means that any biomarkers they shed
into the circulation will exist in very small
amounts, impeding detection. The human
immune system could act as a signal amplifier
(each tumor cell being potentially exposed to
many immune cells). This exquisitely sensitive
apparatus could be harnessed to signal the
presence of a cancer. Immune system biomark-
ers currently under investigation as early cancer
detectors include the overall immune contex-
ture in the peripheral circulation, autoantibodies
(22), T cell repertoires (23), and leukocyte-shed
exosomes.

Biological models of disease

Because we cannot easily observe the first tu-
mor cell to emerge in humans, cancer models
have been developed to probe the mechanisms
underlying tumor initiation (24–27). However,
there are few models of very early cancer or
premalignant disease that faithfully reproduce
somatic events leading to disease in immuno-
competent native tissue microenvironments.
First-generation transgenic models of hu-

man cancer progression (28) afforded initial
glimpses of tissue- and organ-specific biology
of neoplastic progression.Although such studies
have revealed tumor cell–intrinsic (29, 30) and
tumor cell–extrinsic characteristics (9, 31) that
support malignancy, these models have sub-
stantial drawbacks, such as rapid progression,
and phenotypes that are frequently fully pene-
trant. Therefore, these models do not accu-
rately recapitulate human disease.
Models of early cancer have been improved

by developing immunocompetent mouse mod-
els with constitutive and conditional muta-
tions in multiple cancer-associated genes, as
well as embracing tumor microenvironment
and epigenetic regulators. For example,mouse
models allowing exploration of early tumori-
genesis and that more closely recapitulate
human disease (including immunocompetent
and conditional expression models) now exist
for nonmelanoma squamous cell carcinoma
(32), pancreatic adenocarcinoma (33), colon
cancer (34), and lung adenocarcinoma (35, 36).

Further insights will come from the nextwave
of model systems using approaches including
circulating tumor cell patient-derived explants
(37, 38), patient-derived xenografts, and cre-
ation of complex organoids involving multiple
cell types (39). However, many patient-derived
xenograft models use samples from advanced
human disease implanted into immunocom-
promised mice, which may not reflect truly
early disease processes or the important role of
the immune response to early lesions. With in-
creasing sophistication, the interplay of patient-
derivedmodels andadvancednonhumanmodel
systems can provide a path to greater under-
standing of early cancer biology, early detection
markers, prognosis, and appropriate interven-
tions for early cancers.

Challenge 2: Determining risk
of developing cancer

Understanding whom, how, and when to test
and also how test results should be interpreted
requires understanding of individual cancer
risk. Early detection strategies will not be of
equal value to everyone. Therefore, it is impor-
tant to identify the people at elevated risk of
cancer and to tailor an early detection strategy
to that group to maximize the benefits of early
detection and minimize the harms (through
over- or underdiagnosis and treatment) (40).

Risk models

Risk assessment models can identify individu-
als or populations at increased risk for a specific
cancer or cancers. Risk stratification includes
information about age, familial history, expo-
sures, and lifestyle (41),which canbeaugmented
by genetic screening to detect variants in genes
associated with cancer. This strategy is exem-
plified by breast cancer risk predictionmodels
used to stratifywomen into higher-risk catego-
ries and toward genetic testing for inherited
cancer susceptibility (42, 43). Women with in-
herited BRCA1 or BRCA2 pathogenic variants
associated with increased risk of breast and
ovarian cancers are candidates for chemo-
prevention with selective estrogen receptor
modifiers, risk-reducing surgery, or enhanced
breast magnetic resonance imaging (MRI)
screening to enable earlier detection. Currently,
very few high-risk single genes (such as BRCA1
and BRCA2) trigger such action, however poly-
genic risk scores are being explored, which
consider the risk conferred bymultiple genetic
variants (44). Better precision is needed in the
identification of high-risk people who require
screening for early cancer detection. Improved
accuracy of risk modeling will be enabled by
the discovery and use of more-informative
genomic and phenotypic (e.g., breast density)
markers of risk, integrated into multifactorial
models that also consider, for example, family
history and behavioral factors. It is crucial that
risk models are evaluated by experts using the
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appropriate statistical methodologies and vali-
dated in independent datasets (45).
Constructing improved risk stratification

models requires data and biological samples
from large cohorts, ideally in prediagnostic
populations that are followed for any cancer
diagnoses. Current examples include the UK
Our Future Health initiative, which will follow
5 million volunteers (https://ourfuturehealth.
org.uk/); Project Baseline in the US, follow-
ing 10,000 volunteers (www.projectbaseline.
com); the Asia Cohort Consortium, following
at least 1 million volunteers (www.asiacohort.
org); and the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC) study,
following >500,000 volunteers (https://epic.
iarc.fr/). These longitudinal studies in healthy
volunteers could help understand the hidden
variability between healthy individuals and dis-
cover, validate, and contextualize early disease
signals. Ultimately, these studies could iden-
tify factors to stratify healthy individuals into
groups at risk of developing certain cancers.

Screening at-risk populations

Once validated riskmodels have identified the
at-risk populations, these individuals can be
invited to participate in screening programs,
where available. Screening aims to detect early
cancer by inviting asymptomatic, ostensibly
healthy people for testing. Ideally, cancer
screening should be minimally invasive or
noninvasive, low cost, and provide minimal
false negatives or positives to minimize harm
and maximize benefits of screening. Several ex-
isting screening tests improve cancer-specific
mortality or overall mortality, including mam-
mography for breast cancer (46), the Pap smear
for cervical cancer (47), colonoscopy for colo-
rectal cancer (48), and low-dose computed to-
mography (CT) (49) for lung cancer. Although
effective, these technologies are not necessar-
ily minimally invasive, low cost, or highly sen-
sitive and specific. Nor do these tests reach all
the at-risk populations concerned. For exam-
ple, in the US as of 2019, <5% of eligible indi-
viduals have been screened for lung cancer
(50), owing to incomplete implementation of
screening in health care systems and low in-
dividual compliance.
For screening to be successful, the follow-up

diagnostic workup must be feasible and risk-
appropriate. For example, breast nodule biopsy
(triggered by a positivemammogram) is a low-
risk outpatient procedure. Conversely, lung
biopsy (triggered by a positive lung CT screen)
is highly invasive and relatively high risk. The
performance characteristics of the primary
screening test, and the threshold set for a
positive or negative test result, must be cali-
brated against the consequences of a positive
result. Therefore, any early detection strategy
should give rise to actionable, evidence-based
follow-up.

Challenge 3: Finding and validating cancer
detection biomarkers
A key challenge is how to detect the very small
signal of the earliest cancers amid the noise
of normal human biology. Two fundamental
measures of a diagnostic test are sensitivity
and specificity. Sensitivity is the ability of a
test to correctly identify those with the con-
dition being tested for (the true positive rate);
a test with higher sensitivity will miss fewer
cases (i.e., there will be fewer false negatives).
Specificity is the ability of a test to correctly
identify those individuals without the condi-
tion (the true negative rate); a test with high
specificity does not give a positive result when
the condition is not present (i.e., does not give
false positives) (51). Sensitivity and specific-
ity depend on both the technology used in the
test and the biomarker(s) being measured.
Two other key measures are positive predic-
tive value (PPV), which is the probability that
individuals who test positive actually have the
condition, and negative predictive value, which
is the probability that individuals who test
negative do not have the condition (52). The
target values of these parameters will depend
on the intended circumstance of use of the test
and on the prevalence of the particular cancer
being tested for in a given population.

Challenges in biomarker validation

Many biomarkers for early cancer detection
have been proposed, but few have been val-
idated in large trials. For example, elevated
prostate-specific antigen (PSA) in the blood
was a candidate prostate cancer early detec-
tion biomarker. However, PSA varies greatly
between individuals and within individuals
as they age (or as they develop other nonma-
lignant prostate conditions), leading to the
potential for overdiagnosis, unnecessary diag-
nostic workup (including invasive biopsy, which
confers risk), and overtreatment of inconse-
quential disease (which incurs potential adverse
effects without increasing survival) (53, 54).
As such, PSA is not generally recommended
as a primary, population-level screen (Fig. 3).
Another example of a blood marker for can-
cer that showed promise was CA-125 for ovarian
cancer; while use of this marker increased
the number of early-stage diagnoses and de-
creased the number of late-stage diagnoses,
this was not accompanied by reduction in mor-
tality (55).
Even if validated, highly specific biomark-

ers can display dichotomy when taken out
of context. For example, in colorectal can-
cer, KRAS mutations are strongly associated
with disease progression (56), but in the
pancreas, many neoplasms carrying KRAS
mutations are not malignant (57). A useful
biomarker must provide enough prognos-
tic, actionable information to inform clinical
decision-making.

Promising biomarkers
Biomarkers of early cancer include visible
structural changes to tissue and biochemical
changes. Minimally invasive sampling meth-
ods are preferred, especially where repeated
samples from healthy and at-risk individuals
are required. In practice, this includes imag-
ing; sampling body fluids such as blood, saliva,
or urine (58); and sampling tissues via swabs
or brushings. Exhaled breath is another source
of biomarkers, specifically volatile organic com-
pound (VOC) signatures of cancer and asso-
ciated metabolites (59).
Liquid biopsies (sampling of body fluids)

can be used to identify a wide range of sub-
stances indicative of cancer, derived either
from the tumor itself or from the body’s re-
sponse to the tumor. For example, nucleic acid
fragments called cell-free DNA (cfDNA) enter
the blood during cellular apoptosis or necro-
sis. In cancer patients, a portion of the cfDNA,
called circulating tumor DNA (ctDNA), is de-
rived from the tumor. Analysis of ctDNA has
shownpromise for personalizedmutation pro-
filing and monitoring of patients with ad-
vanced cancers (58, 60), inwhom ctDNA levels
are relatively high. Akey challenge is that ctDNA
and indeed all biochemical cancer biomark-
ers are present at extremely low concentra-
tions in early-stage cancer. New approaches are
needed to improve on current limits of detec-
tion to address this limitation.
Human genome sequencing (61, 62) has

provided unprecedented insights into cancer
genomes (63, 64). Although mostly focused on
advanced cancer, these studies have elucidated
patterns of genetic variants across cancers,
some of which may also be present in early
tumors. These patterns can provide a basis for
detection, stratification, and treatment of can-
cers (65). Liquid biopsy tests based on cancer-
associated mutations in ctDNA are showing
promise in early detection (66). However, it is
increasingly clear that phenotypically normal
tissue also harbors a range of somatic mu-
tations that might normally be considered
indicative of cancer or to be drivers of cancer
genesis (67). Researchers developing early de-
tection approaches must be mindful of this—
how can we define what a normal background
of mutations is, as distinct from a consequen-
tial cancer signal?
Epigenetic modifications of DNA provide

another source of early detection biomarkers.
These include cancer-specific DNA methyla-
tion profiles (68), noncoding RNAs (69), small
regulatory RNAs, and the DNA modification
5-hydroxymethylcytosine (70). One promising
approach analyzes methylation patterns of
cfDNA in blood (71) and is now entering large-
scale prospective clinical trials in the UK
(NCT03934866) and the US (NCT04241796).
Another emerging technique is based on the
observation that fragmentation patterns in
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cfDNA differ between people with and without
cancer, and between different cancer types (72).
Other potential detection biomarkers in-

clude circulating tumor cells (73), exosomes
(74), cell fusions (75), metabolites (76), and pro-
teins (77). These complement DNA sequencing
for the discovery and exploitation of cancer-
specific signatures (78–80). Furthermore, certain
microbes may confer susceptibility to certain
cancers (81–84), yielding another potential
pool of biomarkers. Various types of signal
modalities are in clinical use or under devel-
opment for early cancer detection (Fig. 4). It
is possible that multimodal testing will ulti-
mately achieve higher sensitivity and specificity
for early cancer than a test that uses a single
type of biomarker.
Multimodal testing can be sequential or

parallel. Sequential testing cascades from tests
indicating risk to confirmatory test(s) of an-
other modality. Although effective (e.g., colo-
rectal cancer screening) (Fig. 5), this results in
long, complex diagnostic journeys. Parallel test-
ing integrates data from different modalities
to provide the diagnostic signal, for example,
detection of the same cancer through mea-
surement of ctDNA, metabolomics, and imag-
ing. Parallel testing has improved the accuracy
of liquid biopsy tests in blood (80), urine (85),
and cervical swabs (86). Another approach has
been to profile both ctDNA mutations and
serumprotein biomarkers (80,87), with further
improvement achieved by also adding positron
emission tomography–computed tomography

(PET-CT) imaging (88). A prominent example
of a successful multimodal cancer detection
test combines an assay for fecal blood with a
test for known cancer-associated DNAmuta-
tions, for improved colorectal cancer screening
(89) comparedwith the single fecal hemoglobin
test, and is now in clinical use.

Data analytic methods

New computational tools will be vital for an-
alyzing, integrating, and using the data gen-
erated by diagnostics. Artificial intelligence
(AI) and machine learning (ML) approaches,
such as support-vector machine and neural
networkmodels, can discover cancer biomark-
ers, detect cancer-specific signatures in high-
dimensional datasets, and build prospective
statistical classifiers for evaluating diagnostic
performance in independent cohorts (43). Such
approaches offer exciting avenues for progress
but are also fraught with potential challenges,
of which researchers should bemindful. Many
AI and ML models are criticized for being
“black box,” that is, unable to explain why the
features (e.g., biomarkers) have been selected
by the model; the creation of fully interpret-
able models would be advantageous (90). AI
andMLmodels are often developed (or trained)
on datasets derived from selected popula-
tions that do not represent the real population
where the AI-derived test would be used, so
they cannot be extrapolated to real-life condi-
tions (91). Some AI andMLmodels are of poor
design and insufficient sample size, risking

bias and overfitting (92). The quality of design
and reporting of some trials of AI approaches
can also be suboptimal, calling into question
the validity of their claims. Design aspects, such
as not being prospective, being at high risk of
bias, lacking appropriate transparency on data
and code, lacking adequate comparator groups,
and deviating from existing reporting stan-
dards can jeopardize reliability (93). In some
cases, AI and MLmethodology might simply
not have advantages over statistical methods
such as logistic regression (94)—the right tools
should be used for the intended purpose.

Challenge 4: Developing accurate technologies
for early detection

Developing technologieswith the sensitivity to
detect the earliest tumors and the specificity
tominimize false positives is a key challenge.
The emergence of new technologies is enabl-
ing early cancer detection with increasing ac-
curacy. One early detection goal is to detect
emerging solid tumors that are susceptible
to therapy and unlikely to have metastasized.
This usually means prior to development of
tumor microenvironments that support en-
hanced angiogenesis and before suppression
of antitumor immunity (27, 31, 95), when the
tumor is roughly amillimeter in diameter (com-
prising 105 to 106 cells). Most imaging tech-
nologies in clinical use or development cannot
detect such tiny tumors, but new in vivo im-
aging instruments such as 10.5T MRI (96) are
continuously pushing the limits.
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Fig. 3. Prostate cancer detection is a cautionary tale for overdiagnosis and overtreatment. There are various consequences of PSA testing when it is used as a
screening tool. An elevated PSA level is not considered useful for prostate cancer screening owing to false positives and detection of inconsequential cancers
that will not cause harm in an individual’s lifetime. Subsequent biopsy is also imperfect because it does not always capture the tumor and may not distinguish indolent
from aggressive cancers. The introduction of imaging biomarkers [e.g., multiparametric magnetic resonance imaging (mpMRI)] combined with pathology (at the
junctures indicated by the red plus signs in the figure) has improved prognosis through better stratification of disease.
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New technologies
Sensitivity is being improved by recent tech-
nologies that detect tumor metabolites and
other secondary products (Fig. 4) that are rela-
tively more abundant than tumor cells. This
can be augmented by highly specific probes,
such as tumor-specific antibodies or peptides
that are radio-labeled to increase signal. Other
strategies include engineered diagnostics that
are selectively activated in the presence of dis-
ease, such as molecular (85, 97) and biological
(98) sensors that profile the in vivo tumormicro-
environment to generate synthetic biomark-
ers of disease. Activity-based diagnostics use
enzyme activity to generate exogenous bio-
markers that signal the presence of cancer.
For instance, nanoparticles have been devel-
oped that are cleaved by dysregulated prote-
ase activity in cancer cells to generate urinary
reporters (99), and cancer-associated enzymes
can metabolize exogenous VOC probes to
produce volatile reporters for noninvasive de-
tection (97). New synthetic biology tools in-
clude engineered probiotic (100) and immune
cell (101) diagnostics for tumor detection via
amplified, activity-based readouts.
Developments in material engineering and

microfabrication have yielded devices that can
emulate physiological microenvironments to
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Fig. 4. Modalities of early cancer detection. There are a wide variety of biomarker modalities that are in use, or
are being developed, for the early detection and diagnosis of cancer, alongside biomarkers that can be used to
guide prognosis and monitoring of treatment response or recurrence. This figure presents some of the main
examples. CT, computed tomography; MRI, magnetic resonance imaging; FOBT, fecal occult blood test; FIT, fecal
immunochemical test; PET, positron emission tomography; PSA, prostate-specific antigen; ctDNA, circulating tumor
DNA; CTC, circulating tumor cell.

Fig. 5. Colorectal cancer screening is an early detection success story. (A) Screening for colorectal
cancer (CRC) relies on a cascade of diagnostic tests (fecal screening to endoscopy to biopsy and
histopathology) that can lead to (B) the detection of cancers at an earlier stage. This screening has
transformed CRC into a treatable cancer with increased survival rates when the cancer is caught early
(see Fig. 1). Population screening programs have relied on fecal occult blood tests (FOBTs) that measure
gastrointestinal bleeding. In the UK, a FOBT was recently replaced by the fecal immunochemical test
(FIT—a more accurate method of detecting blood in feces), and in the US, screening also includes the
Cologuard FIT-DNA test, which looks for cancer-associated DNA mutations in the feces in addition to
the FIT component. Positive results from fecal screening tests usually then cascade to endoscopic
examination and, where appropriate, intervention. Most CRC, however, is still diagnosed through presentation
to primary care and urgent referral routes, where symptomatic presentation is often associated with a
later disease stage.
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probe tumor biology and isolate circulating
tumor cells (CTCs) and extracellular vesicles
from patient samples. Notable examples include
label-free capture of CTC clusters (73, 102)
and ultrasensitive detection of circulating exo-
somes with microfluidic chips or external
hardware (103, 104). Miniaturization has en-
abled new sensing approaches using wearables
and implantable devices where personalized
health data can inform the prevention or in-
terception of certain diseases (104). More ro-
bust integration of device engineering with
downstream molecular profiling technolo-
gies will help validate the relevance of these
approaches for early detection.

Imaging technologies

Contemporary imaging technologies can only
visualize tumors containing more than 109

cells; this will miss many of the smaller (i.e.,
earliest) tumors. Imaging of tissue morphology
is currently used in breast cancer screening in
the form of x-ray mammography, and low-dose
CT is increasingly being used to detect early-
stage lung cancer in high-risk groups (105).
Although these techniques can be used for
screening, as they are relatively quick and low
cost, they are subject to limited resolution and
also confer risk to the patient given their use of
ionizing radiation. More advanced imaging
modalities are not currently routinely used in
primary screening owing to high cost and low
availability.
Molecular imaging technologies, such as

MRI (106) and PET (107), can perform early
diagnosis and staging. Enhanced variations
on these technologies provide the possibility
of greater sensitivity, specificity, or PPV, for
example, time-of-flight PET (108), where tran-
sit times of the photons emitted by the object
generating the image signal provide a greater
signal-to-noise ratio, and hyperpolarized MRI
(109, 110), where hyperpolarized carbon-13–
containing molecules enable the collection of
perfusion and metabolic information in addi-
tion to structural images.
Using imaging to examine multiple proper-

ties of a lesion can enhance the detection and
classification of early lesions. For example,
multiparametric MRI of the prostate provides
information on prostate volume, cellularity,
and vascularity; this can distinguish benign
lesions from aggressive tumors requiring in-
tervention (111). Imaging has the advantage of
being noninvasive and easily repeatable to de-
tect growing tumors. For example, lung cancer
screening with low-dose CT repeated over time
can distinguish benign lung nodules of low
malignant potential from early lung cancer
nodules (105).
Computer-assisted diagnostic systems help

radiologists to interpret images (112). Computer-
driven feature extraction can exploit differ-
ences in texture and shape that the naked eye

cannot see. Digital attributes of the suspect
lesion are called radiomic features and may
contain indirect information about the under-
lying histopathology (113). This is an area
where there is an opportunity for AI and ML
to help detect cancer (114) and to predict risk
of progression (115), although issues of trans-
parency and reproducibility must be addressed
(116). The application of AI in imaging will
require large volumes of well-annotated image
data, acquired under standardized conditions,
representing all populations equitably, and
made widely available by means of curated
image repositories.
Photoacoustic imaging exposes the region of

interest to pulsed laser light of a given wave-
length, generating a sound that is measured
by microphones or piezoelectric sensors. The
level of detail and resolution of the tissue is
higher than that of all other types of imaging
and is free of ionizing radiation. The challenge
is depth of penetration andminiaturization for
clinical use (117). Visible light imaging through
endoscopy has been a mainstay of early detec-
tion (e.g., in the colon and lung). The emerging
fluorescence endoscopy technique, along with
a fluorescent molecular imaging probe, has
been used for enhanced detection of lesions in
patients with Barrett’s esophagus (118) and of
neoplastic polyps in the colon (119).

Histopathology and AI

After initial detection by biomarkers and/or
imaging, histopathology is a key confirmatory
diagnostic and prognostic stage of the early
detection paradigm. The application of ML
techniques to digitized slides can increase sen-
sitivity; reduce subjectivity and inter-reader
variation; and predict prognosis, recurrence,
and tumor susceptibility to treatment (120). In
some cases, such as Barrett’s esophagus dys-
plasia, bowel polyps, and cervical neoplasia,
pathologists examine a precancerous condi-
tion with the aim of identifying the transition
to early cancer. Digital pathology and AI could
help improve test turnaround times and diag-
nostic accuracy, detecting early signs of cancer
and providing data for further research (121).
Current challenges in digital pathology include
handling artifacts, overcoming sample vari-
ability, lack of binary variables where a diag-
nosis may require a risk score, and combining
samples across multiple sites and cohorts.

Challenge 5: Evaluating early
detection approaches

There are many challenges around the design
and methodology of trials of early detection
approaches. Trials must be carefully designed
to address the relevant population and mea-
sure the appropriate end points to provide
statistically robust evidence to change prac-
tice. Early detection trials differ from the
better-known clinical trials for therapeutics

and require specialist statistical expertise to
inform study design and appropriately pow-
ered sample size. For example, the statistical
power of early detection trials is affected by
factors that do not exist in therapeutic trials,
such as the number of times an individual is
tested, the time between tests, and the ages at
which testing will be performed (122). The end
points to be considered in diagnostic trials dif-
fer from those in therapeutic trials, as do regu-
latory approval pathways. However, the main
challenges to the delivery of early detection
trials lie in their scale and interpretation.

The scale of early detection trials

Currently, regulatory or reimbursement deci-
sions on the adoption of cancer screening tests
are generally based on impact on mortality:
Does the use of the screening test mean fewer
deaths from cancer than in an unscreened
population? Demonstrating this requires very
large numbers of participants (given the com-
paratively low incidence rate of cancers in an
asymptomatic population) and very long time-
lines (given the potential lag between com-
mencement of the trial, a given individual
developing cancer, and that cancer resulting
in death). For example, the trials assessing low-
dose CT screening for lung cancer in heavy
smokers took 7 years and 53,454 participants
in the US (123) and more than 10 years with
15,789 participants in Europe (124). In a more
general population (lacking the greatly in-
creased cancer risk of heavy smoking), even
greater numbers of participants are needed.
For example, trials assessing screening for
ovarian and prostate cancers involved more
than 200,000 women (125) and 184,000 men,
respectively (126). This scale makes most early
detection trialsmulticenter by default. Clinical
trial networks such as those sponsored by the
EuropeanOrganisation forResearch andTreat-
ment of Cancer (EORTC) and the US-based
National Cancer Institute (NCI) can help to
facilitate and accelerate such large trials.
Another attractive option is embedding re-

search into screening programs, taking advan-
tage of existing screening infrastructure. This
can, for example, be done using the stepped-
wedge design, where observations are initially
collected during a baseline period in which no
participants are exposed to the intervention
(i.e., the new screening test under investigation).
After this baseline period, at regular intervals
(or steps) participants (or groups of participants)
are randomized to receive the intervention;
these ascending steps continue until all par-
ticipants have received the intervention (127).
One way to decrease the length and size of

trials is to power the study to detect changes in
surrogate end points (e.g., a reduction in the
absolute number of late-stage diagnoses ver-
sus controls) rather than mortality (128). Such
trials are faster and require fewer participants
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to record enough events in a limited time frame.
However, most health care systems, regulatory
agencies, and guideline bodies still require
evidence of reduced mortality before approv-
ing tests for marketing, reimbursement, or
widespread use. Advice should be sought from
the relevant agencies regarding acceptability
of surrogate end points. Studies should be
designed and powered, and end points chosen,
on the basis of the objectives of the study (e.g.,
initial signal-finding trial versus technology
validation versus confirmatory trial) and the
intended circumstances of use. Early detection
technology must generate the evidence that is
required by regulators, advisory bodies, and
payers for research to achieve clinical impact.
Proper validation (129) and consideration of
the pathway to implementation are crucial.

Interpreting trial results

Clinical trial results of early detection technol-
ogies should be interpreted taking into consid-
eration spectrumand lead-timebiases. Spectrum
bias arises when tests are assessed in a popu-
lation that does not reflect the intended target
population (130). For example, comparing a
study population with established and ad-
vanced disease to a healthy control popula-
tion (often young and without other chronic
diseases that increase variability in the gen-
eral population) can confound the specificity
of the test. Spectrum bias also arises when a
test is developed using an at-risk population
(e.g., heavy smokers) with high disease inci-
dence but is intended for use in the general
population (with lower incidence). Such a
test will lose sensitivity and even specificity in
the real-world target population, which has
lower prevalence of disease and other con-
founders. This can cause false positives and
even overdiagnosis.
Lead-time bias describes the time from

early detection of disease to clinical presenta-
tion of signs and symptoms (when diagnosis
would otherwise have taken place) (131, 132).
This makes survival seem longer when you
detect cancer earlier by artificially moving the
starting block back in time, even if early de-
tection did not affect the point at which the
individual died.
Spectrum bias can be addressed by vali-

dating markers and tests in populations that
appropriately represent the population of
intended use of the test. Lead-time bias is a
more complex issue; currently, the method to
address this bias is to conduct a trial designed
to assess impact on mortality (e.g., whether
there are fewer deaths overall in the screened
group than in the unscreened group), however
this then leads to the challenge of huge sample
size and cost, as discussed above. This chal-
lenge can be addressed through careful study
design. Dedicated experts in screening and
diagnostic methodology must be involved,

and the intended target audience for the re-
sults (e.g., regulatory and guideline-developing
bodies)must be consultedwhen designing trials
to evaluate early detection approaches. If we
are to increase the glacial pace at which new
early detection and screening approaches are
evaluated and reach the clinic, a rethink of the
evidence threshold for adoption is required.
For example, success could be assessed on the
basis of an absolute reduction in late-stage di-
agnoses (or other well-validated surrogate out-
comes), withmortality data then gathered after
implementation.

Conclusions

Early detection of cancer has the potential to
transform patient survival and is increasingly
recognized as an area of unmet need by the
public, patients, policy-makers, and research
funders. A sustained effort will be required to
find practical, long-term solutions for many
of the challenges we have described in this
Review. We have suggested a framework that
we believe will meaningfully accelerate prog-
ress (Fig. 6). Several contextual issues must

also be carefully considered to maximize the
translation of early detection research into
clinical impact.
Funding programs targeting early detection

have been set up by some funders of academic
cancer research, such as the US National Can-
cer Institute (133, 134) and Cancer Research
UK (135, 136). However, the proportion of ove-
rall cancer research funding dedicated to early
detection remains disproportionately low con-
sidering the potential health benefits. More
must be done, particularly in supporting valid-
ation of markers and tests (129). Dedicated
funding would also help attract early career
researchers to the field and enable them to
become established. The relatively long time-
lines of early detection research and test devel-
opment necessitate a rethink about traditional
fellowship and grant models of supporting and
evaluating early career researchers to incen-
tivize them to establish a career in this field.
Furthermore, the pharmaceutical industry

has invested proportionally little in early de-
tection compared with the billions spent on
drug development, often because of a historical
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Fig. 6. Overcoming barriers to enable early detection. There are system-wide challenges (gray bricks)
that must be tackled to reach the goal of earlier cancer detection. The multiple facets of these challenges
require a diverse set of approaches and enablers (light gray) and communities (colored outer segments)
to overcome them.
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perception of an unattractive business model.
However, there now appears to be an inflec-
tion (137) whereby investors and large corpo-
rations are increasingly willing to invest in
this space (138, 139). This willingness may be
due to a growing realization that early detec-
tion will change the business model for cancer
treatment.
An interdisciplinary culture is essential to

early detection research and development,
which inherently needs a convergence of biol-
ogical understanding, clinical insight, technol-
ogy innovation, data science, risk stratification,
and health systems research. In the absence of
any one of these essential components, the
goal of transforming cancer survival cannot be
realized. The implementation of interdiscipli-
narity can be fostered by research funders.
To have a meaningful impact on survival,

early detection must be integrated into health
care systems and must lead to evidence-based
early interventions, either to prevent progres-
sion or to cure cancer. Lastly, and crucially,
researchers must keep in mind that early de-
tection should be accessible to all according
to need, must not exacerbate health inequi-
ties, and must seek to do no harm (minimiz-
ing overdiagnosis and overtreatment). With
the ever-increasing depth of biological insight
and pace of technological innovation, we are
at the tipping point for early cancer detection
research and its translation to the ultimate
objective of early curative interventions and
increased cancer survival.
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Detecting cancer early
Many types of cancer are detected at an advanced stage, when treatment options are limited and prognosis is poor.
Being able to detect cancers early can substantially improve survival, but this approach comes with challenges,
including the possibility of overdiagnosis and overtreatment, which can harm people who would not have developed
overt malignancy. In a Review, Crosby et al. discuss the importance of cancer early detection and the main challenges
that need to be overcome to better understand the early events in tumorigenesis that are detectable in screening tests.
The results of these tests can then be reliably interpreted to determine whether an individual requires treatment. —
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