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ABSTRACT: The engineering of bacteria to controllably deliver
therapeutics is an attractive application for synthetic biology. While
most synthetic gene networks have been explored within microbes,
there is a need for further characterization of in vivo circuit behavior in
the context of applications where the host microbes are actively being
investigated for efficacy and safety, such as tumor drug delivery. One
major hurdle is that culture-based selective pressures are absent in vivo,
leading to strain-dependent instability of plasmid-based networks over
time. Here, we experimentally characterize the dynamics of in vivo
plasmid instability using attenuated strains of S. typhimurium and real-
time monitoring of luminescent reporters. Computational modeling
described the effects of growth rate and dosage on live-imaging signals generated by internal bacterial populations. This
understanding will allow us to harness the transient nature of plasmid-based networks to create tunable temporal release profiles
that reduce dosage requirements and increase the safety of bacterial therapies.
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Over the past century, the observation that bacteria
accumulate preferentially in tumors has prompted the

investigation of the use of a number of strains for cancer
therapy, including C. novyi, E. coli, V. cholorae, B. longum, and S.
typhimurium.3,13,2,27,17,24 Attenuated strains of S. typhimurium
have generated particular interest as they can innately home to
and colonize tumors of a variety of sizes and have exhibited
safety and tolerance in human clinical trials.25,5,22,8 S.
typhimurium were initially shown to mediate antitumor effects
through recruitment of the host immune system and by
competition with cancer cells for nutrients. Subsequently,
engineered production of therapeutic cargo was added through
simple genetic modifications. While these studies represent
important advances in the use of bacteria for tumor therapies,
the majority of existing efforts have relied on constitutive,
“always on” cargo production9,26,16,6 that typically results in the
delivery of high dosages, off-target effects, and development of
host resistance.
As a next step, synthetic biology seeks to add controlled and

dynamic production of cargo by utilizing computationally
designed “circuits” that have sophisticated sensing and delivery
capabilities.7,4,19,1 These circuits can be designed to act as
delivery systems that sense tumor-specific stimuli and self-
regulate cargo production as necessary. Since plasmids are the

common framework for synthetic circuits, we begin by
characterizing the dynamics of plasmid-based gene expression
in an in vivo mouse model by utilizing real-time luminescence
imaging, quantitative biodistribution measurement, and com-
putational modeling. Together, these approaches provide a
framework for exploiting the inherent instability of plasmid-
based networks, which will facilitate the generation of specific
temporal release profiles directly within the tumor environ-
ment.
We began by transforming two different attenuated strains of

S. typhimurium with a constitutively expressed luciferase
plasmid (luxCDABE genes on a pBR322/colE1 high-copy
without partitioning machinery) to allow for real-time
monitoring of luminescence with an in vivo imaging system
(IVIS).13 Strain A (ELH430:SL1344 phoPQ-) is attenuated for
the PhoPQ regulon, which is known to activate a number of
genes related to virulence, while Strain B (ELH1301:SL1344
phoPQ- aroA-) contains an additional aromatic amino acid
synthesis mutation that effectively allows it to grow only in
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nutrient-rich environments. Importantly, while these strains are
derived from the same parent (SL1344), their growth rates and
therefore plasmid-loss dynamics differ significantly. To
investigate the in vivo gene expression dynamics of these
strains, we generated model xenograft tumors in mice by
subcutaneous injection of a human ovarian cancer cell line
(OVCAR-8). After measurable tumors were established,
bacterial strains were injected intravenously via tail vein (Figure
1a) with dosages varying from 104 to 5 × 106 bacteria. Once
injected, bacteria specifically colonized tumors at a rate
proportional to the dosage administered, as measured by
IVIS signal at 24 h post-injection (Figure 1b).
We then monitored the tumor site for Strain A-derived signal

over the course of 60 h using time-lapse IVIS imaging (Figure
1c,d). These trajectories followed the specific pattern of an
initial steep increase followed by a gradual decrease back to
baseline (Figure 1d). We hypothesized that the shape of this
waveform was the result of the initial exponential growth of
plasmid-containing bacteria followed by increasing rates of
plasmid loss in the absence of antibiotic selection. Eventually,
the rate of luciferase production by the remaining plasmid-
containing bacteria is overtaken by luciferase decay, and the
total signal begins to decline.
To test this hypothesis, we counted the number of plasmid-

containing and non-plasmid-containing bacteria in tumors over
time by observing bacterial growth on selective media (Strain A,

106 bacteria injected). Each measurement was compared to
counts taken in the spleen, a control tissue where there a stable
subpopulation is present, as the bacteria initially accumulate but
do not grow or die in this site. At each time point, organs were
excised from the mouse and then homogenized and plated with
or without antibiotic selection (Figure 2a, n = 3−5 tumors).
Colony counting on these plates yielded an accurate measure of
the plasmid state of the bacterial population over time (Figure
2b). After 2 h, roughly 3 × 103 plasmid-containing bacteria
reside in the tumor, or about 0.3% of the injected dose. After 12
h, plasmid-containing bacteria grow to a level of 106, and the
number of non-plasmid-containing bacteria reaches a similar
level. This accumulation corresponds to a doubling time of
approximately 75 min. Growth rate declined further over time,
presumably due to nutrient limitation, ultimately resulting in a
300 min doubling time for non-plasmid-containing bacteria
(Figure 2b).
While the total population of bacteria grew throughout the

course of the experiment (60 h), the number of plasmid-
containing bacteria reaches a maximum at 24 h (Figure 2b). By
taking the ratio of these populations, we can calculate the
percentage of plasmid-containing bacteria over time (Figure
2c). After 12 h, roughly 50% of the population retains the
plasmid, a fraction that drops to 10% after 24 h (Figure 2c).
The slope of this line remains constant throughout the 60-h

Figure 1. Tumor homing bacteria and dosage variation. (a) S. typhimurium are injected via tail vein into nude mice and localize to subcutaneous
tumors where they replicate. (b) Dosages between 104 and 5 × 106 bacteria (Strain A) were injected into mice, and IVIS images were taken after 24
h. Higher initial dosages show an increasing signal and a minimum value of 5 × 105 bacteria required to visualize tumor colonization at 24 h. (c)
Sequence of IVIS images for strain Strain A at 106 dosage over the course of 60 h. (d) Total flux of left (light blue) and right (dark blue) tumors as a
function of time normalized to the maximum value across the trajectory. The IVIS signal rises due to rapid bacterial growth and then decays due to
plasmid loss and luciferase instability.

ACS Synthetic Biology Letter

dx.doi.org/10.1021/sb3000639 | ACS Synth. Biol. 2012, 1, 465−470466



experiment and represents the rate of plasmid loss in the tumor
environment.
The tumor-spleen ratio is commonly reported as a

characteristic measure of specificity and tumor-homing ability
for a given strain. Bacteria accumulate in the spleen from the
initial dosing yet do not subsequently grow and divide. Given
that we observed essentially no increase in the bacterial count
in the spleen throughout the duration of our experiments, the
tumor-spleen ratio increased over time (Figure 2d). Since this
ratio is typically reported as a fixed number in the literature, its
time-dependence may help to explain the wide range of
reported values.14,23

To explore how bacterial growth rate affects the dynamics of
plasmid instability over time, we injected two groups of mice
with Strain A and B (at a dosage of 106) and monitored their
signal over the course of 60 h. The two strains displayed
markedly different profiles, with Strain A peaking and decaying
sharply and the slower growing Strain B peaking broadly over a
longer period of time before decaying (Figure 3a,b). We plot
the average trajectories for Strains A and B on an absolute
luminescence scale in Figure 3c for comparison. To quantify
these differences, we measured the width at half-maximum and
total area under each curve for the average trajectories (Figure
3d). These measurements illustrate that Strain A produces
more luminescence quickly while Strain B produces less
luminescence over a longer period of time (Figure 3d).
Additionally, to confirm that signal intensity is a representative

measure of the population of plasmid-containing bacteria, we
compared counts of antibiotic resistant bacteria with absolute
IVIS values at the 72-h time point and found them to be highly
correlated (R = 0.832, Supporting Information).
Developing a fully tunable dynamic expression platform will

require a more complete understanding of the underlying
processes. Plasmid-loss dynamics have been well described in a
variety of in vitro and in vivo contexts;20,12,15 however, modeling
of population or gene-expression dynamics has not yet been
studied for in vivo tumor environments. Specifically, we hope to
learn how expression dynamics are dictated by the rates of
growth and plasmid-loss for a given strain. To accomplish this,
we developed an ordinary differential equation (ODE) model
describing internal plasmid and non-plasmid-containing bac-
teria and their respective expression of luciferase signal (Figure
4a). Initially, N0 bacteria are injected. These plasmid-containing
bacteria replicate and lose their plasmids at rate τ, resulting in
populations of plasmid (N+) and non-plasmid (N−) containing
bacteria that continue to grow at rates μ+ and μ−, respectively
(Figure 4a). Both populations grow exponentially for 24 h until
available nutrients become limiting, a process modeled by
including a finite quantity of tumor substrate that is consumed
according to Michaelis−Menten kinetics 21. The tumor
environment is also spatially restrictive of bacterial growth,
with bacteria in the center consuming nutrients more slowly
than bacteria on the rapidly growing periphery. Thus, despite a
nearly constant population of plasmid-containing bacteria, IVIS

Figure 2. Population dynamics of bacteria inside tumor environments. (a) Schematic showing tumor extraction, homogenization, and plating to
count internal populations of bacteria. Plating on antibiotics reveals the number of plasmid-containing bacteria, while plating without antibiotics gives
the total number of bacteria. (b) Measured number of plasmid-containing and non-plasmid-containing bacteria per organ calculated for plasmid-
containing bacteria (green) and non-plasmid-containing bacteria (blue). Bacteria with the plasmid reach a steady state around 24 h, while the non-
plasmid bacteria continue to grow. (c) Percentage of cells containing the plasmid as a function of time showing a constant loss rate over the course of
72 h. (d) Ratio for total number of bacteria in the tumor versus the spleen. This number is typically reported as a measure of specificity of the tumor-
targeting strain. Strain A at a dosage of 106 cells was used for all panels. Lines indicate a piecewise linear fit of the data.
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signal fails to increase after 24 h since most of these bacteria
reside in the non-growing center of the colony. We accounted
for this behavior by limiting the amount of bacteria that can
consume the tumor substrate, which effectively limits plasmid-
containing bacterial growth and allows luciferase decay to
dominate.
Our ODE model produced dynamics that were consistent

with our experimental observations, where IVIS signal is taken
to be proportional to the plasmid-containing population
(Figure 4b). We define the full-width at half-maximum, ω,
and area under the curve as important parameters that
characterize the duration and magnitude of dosage, respectively
(Figure 4c). To understand how to tune in vivo expression
profiles according to these parameters, we varied growth rate
and dosage level and modeled the effects on IVIS signal in each
case (Figure 4d,e). Lower growth rates yield IVIS curves that
are shifted toward later times with broader widths and lower
areas (Figure 4d). In contrast, larger initial dosages result in a
linear increase of IVIS signal that increases area but does not
alter the width (Figure 4e). The latter linear increase in area as
a function of dosage is reflective of doses much lower than the
carrying capacity of the system. Finally, decreasing the plasmid-
loss rate resulted in an increase in area under the curve as well
as a slight shift in the width and time to peak of the gene
expression profile (Supporting Information).
These effects correlate with experimental observations that

can be explained based on differences in strain growth rate.
Since plasmids are lost during cell division, the faster a cell
replicates, the more frequently it loses plasmid. Thus, the faster
growing Strain A accumulates luciferase quickly but loses a
comparatively larger fraction of plasmids per day, resulting in
higher IVIS values that peak at earlier time points than Strain B
(Figure 3a,b). In contrast, Strain B grows more slowly,
producing less luciferase but maintaining its plasmids much

longer, yielding a broader expression profile compared to Strain
A (Figure 3a,b).
In the context of drug delivery, a critical parameter is the rate

at which a device releases drug into the surrounding
environment. For instance, materials have been investigated
that generate “burst”, “delayed”, or “sustained” release
characteristics.11 The transient plasmid-based system we have
developed here can generate a similar variety of expression
dynamics. For instance, Strain A produces an expression profile
analogous to burst release due to its fast growth rate and high
rate of plasmid loss. In contrast, Strain B yields a sustained
release profile owing to its slow growth rate and moderate rate
of plasmid loss. Bacteria are unique in the context of drug-
delivery vehicles in that they produce their own cargo, in
contrast to other devices that are preloaded and depleted. This
difference allows them to deliver a time-varying concentration
of cargo in a designed profile directly on site. In the future, this
work will enable a variety of drug-release profiles from
engineered bacteria for therapeutic applications.
Developing both experimental and computational techniques

in concert will be critical to engineering in vivo genetic circuits.7

Computational modeling can rapidly probe system parameters
to explore potential outputs but must remain closely tied to
experimental results to remain relevant. On the other hand, in
vivo experiments present the most direct application of
engineered circuits, but involve long time scales and the results
are often difficult to interpret. Here, we have utilized plasmid
instability to generate transient expression profiles in tumor
environments. In our computational model, we can predict how
dosage, strain growth rate, and plasmid loss rate combine to
yield differing expression dynamics. Subsequently, these designs
can be implemented experimentally by varying plasmid type,
copy number, and maintenance system18 or by modifying the
strain growth rate. Building on this platform, future applications

Figure 3. Characterization of Strain A and Strain B IVIS profiles. (a, b) Time-course trajectories for Strain A (a) and Strain B (b) over the course of
60 h normalized to their maximum value across the trajectory. Colored lines indicate individual trajectories, and the solid black line indicates the
average trajectories. (c) Time-course trajectories for Strain A and Strain B on an absolute scale. Average trajectories from (a) and (b) were scaled by
the average absolute value of the individual trajectories. (d) (left) Full-width at half-maximum and the area (right) under the curve for the average
trajectory of both strains. These parameters characterize the dosage and duration of transient gene-expression.
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will include engineered gene circuits that further extend the
range of expression dynamics, sensing tumor-specific stimuli
and self-regulating cargo production.

■ METHODS

S. typhimurium strains Strain A (SL1344 PhoPQ-) and Strain B
(SL1344 PhoPQ- aroA-) were provided by Elizabeth Hohmann
(MGH).10 The constitutive plasmid bearing luxCDABE genes
was received as a gift from the Weiss lab.13 On the day of
injection, bacteria containing plasmids were diluted 1/1000 into
fresh LB media (Difco, 0.22 μm filtered) with antibiotics
(Ampicillin 100 μg/mL) and grown up to OD600 = 0.4−0.6.
Cells were then prepared by washing 4 times with PBS (0.22
μm filtered) and measured for OD600. Colony counts were
performed on the preparation as a calibration and cells were
prepared at various concentrations for 100 μL injections.
Subcutaneous human xenograft tumors were generated by

injecting 5 × 106 OVCAR-8 cells (NCI DCTD Tumor
Repository, Frederick, MD) bilaterally into the hind flanks of 4-
week-old female Ncr/Nu mice. Cells were grown to 80−100%
confluency in RPMI 1640 media supplemented with 10% fetal
bovine serum and antibiotics (100 μg/mL penicillin and 100

μg/mL streptomycin) before injection. Cells were pelleted and
resuspended in phenol red-free DMEM with 15% reduced
growth factor Matrigel (BD Biosciences). Tumors were allowed
to grow for 10−20 days until tumor masses of 200−500 mg
were reached.
Colony counts were measured by dissecting tumors and

organs from mice, homogenizing using a Tissue-Tearor
(BioSpec), and plating serial dilutions on LB and LB Ampicillin
plates. Prior to imaging, mice were anesthetized with 2−3%
isoflurane. IVIS signals were measured using the IVIS Spectrum
imaging system (Caliper Life Sciences) with 1−60 s exposure
times, and Living Image software (Caliper Life Sciences) was
used for analysis. Data where the tumor had ulcerated or had
low signal (maximum of trajectory did not reach above 106

radiance, or approximately <5× initial background) were not
included. Error bars drawn are standard error.

■ ASSOCIATED CONTENT
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Figure 4. Modeling bacterial dynamics inside of tumor environments. (a) Schematic of mathematical model. Bacteria containing plasmids are
injected at a dosage N0. Plasmids are lost from cells at a rate τ, and growth of resulting plasmid-containing and non-containing cells continues at μ+
and μ−, respectively. (b) Modeling results (solid lines) for the number of plasmid-containing (blue) and non-plasmid-containing (green) bacterial
population data from Figure 2b. Open circles indicate experimental points. (c) Typical time course of an IVIS trajectory indicating parameters ω and
area for characterizing transient gene expression. The relative IVIS trajectory is typically measured experimentally due to mouse-to-mouse variability,
while the absolute IVIS trajectories are used to calculate ω and area. (d) The effect of growth rate on transient gene expression. Decreasing growth
rate shifts the absolute IVIS signals to a lower value and longer peak times, therefore increasing ω and decreasing the area under the curve. (e) The
effect of initial dosage on transient gene expression. Increasing the dosage shifts the absolute IVIS signals to a higher level, increasing the area under
the curve, but does not change the relative IVIS trajectory shape or ω value.
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Mathematical model

Our ordinary differential equation model is presented below in non-dimensional form. The
model describes the dynamics of two populations of bacteria, those containing the luminescent
plasmid (n+) and those who have lost the plasmid (n−). The two populations grow inside the
tumor environment and consume a substrate (S) which is in limited supply.

dn+

dt
= (1 − τ)µ+n+

− γ+n+ (1)

dn−

dt
= µ

−n− + τµ
+n+

− γ
−

n
−

(2)

dS

dt
= −[

µ−n−

A−

−

µ+n+

A+
][

1

1 + q · (n
−
+ n+)

] (3)

µ
+ =

µ+
maxS

K + S
µ
− =

µ−

maxS

K + S
(4)

The parameters above are τ, the rate at which cells lose plasmid, µ+
max and µ−

max, the maximal
growth of plasmid and non-plasmid containing cells respectively. K, the Michaelis-saturation
constant of growth rate, A+ and A−, the depletion rate constants of substrate S by µ+ and µ−

cells. γ+ and γ
−

, the death rates of the bacteria, and q, the rate at which tumor substrate de-
pletion is limited by the maximal amount of cells. This last term is to account for the fact that
a limited number of bacteria (those on the outward growing rim) can contribute to the decay
of the tumor substrate. The model is non-dimensionalized by hours, 1 bacteria, and a substrate
concentration of µM.

The total IVIS signal is reflective of the number of luciferase enzymes and hence the number of
actively expressing luciferase bacteria. As an approximation to this signal, we modeled the signal
to be proportional to the number of plasmid containing cells (dominant contribution to the IVIS
signal) minus the first-order decay of the luciferase enzyme. We assume that each bacterium con-
taining a plasmid contributes equally to the IVIS signal although there is likely variability due to
the distribution of plasmids per cell in a population as well as contributions from non-plasmid
containing bacteria where luciferase is not yet significantly diluted. Another approximation in
the IVIS signal arises in that plasmid-containing bacteria initially populate the tumor core and
express luciferase, but as bacteria grow radially to a larger population, less nutrients are left for
the bacteria in the center to express any of the luxCDABE genes (either luciferase or luciferin
substrates), which are the main contributors to the IVIS signal. This results in colony counts
reaching a nearly steady-state as a function of time but expression level plateauing, causing an
decay in IVIS signal due luciferase instability. We have previously modeled this scenario with a
spatial model and a density dependent protein production term [1].

The rate of change of the luciferase enzymes is given by:

dL

dt
= Bn+µ+(1 − τ − γ+/µ+)− γLL

where B represents the number of rate of expression of luciferase per cell and γL repre-
sents the luciferase decay. The IVIS signal (I) is proportional to the luciferase signal, i.e., I=κL,
which scales parameters B and γL accordingly. The value of κ contains physical properties

1



such as the permitivity of skin to luciferase enzymes and number of photons emitted per en-
zyme. The lumped parameters chosen for the data presented in Figure 4 are: τ = 0.2, κB =
10, A+ = A− = 0.01, K = 1000, κγL = 0.3, γ

−
= 0.001, γ+ = 0.075, q = 1.6 with initial conditions

n+ = 3365, n
−

= 0, I = 0, S = 1000. Supplementary Figure 2 shows the substrate (all of Eq
3), growth rate for plasmid containing cells (Eq 4, teal), and substrate limitation function (right
bracket Eq 3, green) as a function of time.
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Model equations and parameter sets. Initially, an ODE system for plasmid loss was used that is
similar to previous models [2]. One difference that arises in the tumor environment are that
nutrients are spatially limited, hence consumption of tumor substrate is restricted to a certain
number of bacteria. We accounted for this by limiting the substrate decay by total number of
bacteria present. Several of the parameters are unknown, thus parameters were chosen to fit
the bacterial population curves (Fig 2B) with growth rates and a loss rate close to experimental
values. Then IVIS trajectories were generated using these fits. Quantitatively similar fits can be
obtained by setting the growth rates equal and modifying the plasmid loss rate. Plasmid loss rate
and a growth rate advantage of non-plasmid containing cells can compensate for one another,
though experimentally we observe that non-plasmid containing cells grow faster in the tumor.
This difference in growth rate may arise from the fact that newly formed non plasmid containing
bacteria will occupy a larger percentage of cells on the growing front, allowing them to be in a
more nutrient-available environment and grow faster as a population. This is also why we made
the choice for non-plasmid containing cells degrading at a lower rate than the plasmid-containing
ones.
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