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Improved biomarkers are needed for prostate cancer, as the current
gold standards have poor predictive value. Tests for circulating
prostate-specific antigen (PSA) levels are susceptible to various
noncancer comorbidities in the prostate and do not provide
prognostic information, whereas physical biopsies are invasive,
must be performed repeatedly, and only sample a fraction of the
prostate. Injectable biosensors may provide a new paradigm for
prostate cancer biomarkers by querying the status of the prostate
via a noninvasive readout. Proteases are an important class of
enzymes that play a role in every hallmark of cancer; their activities
could be leveraged as biomarkers. We identified a panel of prostate
cancer proteases through transcriptomic and proteomic analysis.
Using this panel, we developed a nanosensor library that measures
protease activity in vitro using fluorescence and in vivo using urinary
readouts. In xenograft mouse models, we applied this nanosensor
library to classify aggressive prostate cancer and to select predictive
substrates. Last, we coformulated a subset of nanosensors with
integrin-targeting ligands to increase sensitivity. These targeted
nanosensors robustly classified prostate cancer aggressiveness and
outperformed PSA. This activity-based nanosensor library could be
useful throughout clinical management of prostate cancer, with
both diagnostic and prognostic utility.

activity-based nanosensors | proteolytic enzymes | prostate cancer |
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The lifetime risk for a US male to be diagnosed with prostate
cancer is 1 in 6, yet mortality from this disease is only 1 in 35

(1). This discrepancy highlights the need for improved prognosti-
cation and management that could be enabled by accurate bio-
markers (2). While prostate-specific antigen (PSA) is the clinical
blood biomarker standard, it is susceptible to various noncancer
comorbidities. For example, infection and benign prostatic hyper-
plasia (BPH) are the most common sources of elevated PSA (1).
Factors such as the time since a benign condition and PSA half-life
impact the performance of this biomarker (3, 4), which contributes
to its poor predictive value: Only about 30% of men with elevated
PSA have cancer detected upon biopsy (1). Further, biopsies
sample only 1/1,000th of the prostate, which contributes to missing
30% of patients who bear high-grade cancer (5). Thus, a large
fraction of the patients classified as low risk will progress and be at
risk for recurrence. PCA3 is another biomarker that has been studied
recently, but it is not as widely implemented and not recommended
for use at the time of initial biopsy, according to National Compre-
hensive Cancer Network (NCCN) guidelines (6). Better biomarkers
with lower susceptibility to benign false positives and improved
ability to distinguish aggressive from indolent disease are needed.
Aberrantly expressed proteases are candidates for cancer bio-

markers, as they play critical roles in almost every hallmark of
cancer (7). In fact, PSA is a protease in the Kallikrein family
(KLK3), and is regulated by androgen signaling. KLK2, another
member in the family, may also serve as a meaningful biomarker in
prostate cancer, as demonstrated recently using a radiolabeled
antibody to track androgen deprivation therapy (8). This strategy

of imaging active proteases in prostate cancer has been applied to
several other enzymes, such as urokinase plasminogen activator
(uPA), which is up-regulated in aggressive prostate cancer (9).
While these strategies show promise, they each only address one
aspect of prostate cancer, such as imaging the androgen receptor
axis. Additionally, the reliance on imaging as a read-out requires
capital-intensive equipment and precludes simultaneous measure-
ment of multiple enzymes. The ability to integrate multiple signals
has shown significant promise in cancer diagnostics, such as the
ConfirmMDx for Prostate Cancer (10), OncotypeDX Prostate
Cancer assay (11), and the Prolaris Prostate Cancer test (12), al-
though these approaches require invasive biopsies. An ideal pro-
tease activity test would therefore integrate many prostate cancer-
specific signals in a noninvasive platform.
We have developed injectable activity-based nanosensors

(ABNs) that, in response to protease cleavage in the tumor mi-
croenvironment, release barcoded reporters detectable in the urine
(13–15). We applied this concept to prostate cancer, with a focus
on stratifying disease by first performing transcriptomic and pro-
teomic analysis to identify prostate cancer-associated proteases
overexpressed in cancer tissue relative to healthy tissue, as well as
proteases that differentiate higher- and lower-grade cancers. Next,
we screened a panel of protease substrates for activity against these
disease-associated proteases and formulated a 19-plex ABN li-
brary. We evaluated this library using in vitro and in vivo models of
human prostate cancer that recapitulated the protease expression
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patterns seen in human cancers. Finally, we modified nanosensors
with integrin-targeting peptides to enhance sensitivity and achieved
robust classification of aggressive cancer and outperformed PSA
for detection.

Results
Human Transcriptome Analysis Identifies Candidate Protease Biomarkers.
We set out to systematically identify proteases expressed in human
prostate cancer, formulate and build ABNs to measure their
activity, and test the ABNs (Fig. 1A). The ABN platform com-
prises three components: a nanoparticle core that determines
biodistribution and prevents urine accumulation of unliberated
reporters, peptide substrates that are cleaved by target endo-
proteases, and urinary reporter barcodes paired to each
substrate.
We queried transcriptomic data in The Cancer Genome Atlas

(TCGA) to identify proteases overexpressed in prostate cancer
samples versus normal adjacent tissue (NAT) samples (Fig. 1B).
Out of over 150 secreted and membrane-bound endoproteases in
this dataset, 26 were expressed in tumors at levels at least 1.5-
fold over NAT (panel termed “PRAD” to represent proteases
overexpressed in prostate adenocarcinoma). Next, we analyzed
the same TCGA dataset to identify proteases that differentiated
Gleason 7 to 10 samples from lower-grade Gleason 6 samples (Fig.

1C) because Gleason 6 lesions have been shown to lack many of
the hallmarks of cancer (5). A list of 17 protease genes was ele-
vated in the higher-scoring Gleason samples (panel termed
“AGGR” to represent proteases overexpressed in aggressive can-
cer) (Fig. 1C). Nine proteases were present on both lists (SI Ap-
pendix, Fig. S1A). A subset of proteases from these analyses
offered good classification potential, based on area under the re-
ceiver operating characteristic (AUROC) curve analysis, for dis-
tinguishing cancer from normal (max AUROC = 0.93) and
aggressive from indolent (max AUROC = 0.73; SI Appendix,
Fig. S1 B and C). These proteases were predominantly metal-
loproteinases (MPs) and serine proteases (SPs). Notably, we
queried the same TCGA samples to look for concomitant protease
inhibitor up-regulation and observed that many tissue inhibitors of
MPs and serine protease inhibitors were expressed at reduced
levels in cancer samples (SI Appendix, Fig. S1D), highlighting broad
proteolytic dysregulation. We filtered the protease lists based on
several practical criteria, including availability of recombinant pro-
tease for use in substrate development, organ expression patterns
using the Genotype-Tissue Expression (GTEx) portal, and knowl-
edge of substrate specificities, resulting in a list of 14 candidate
proteases (SI Appendix, Fig. S1A).
Importantly, while patients with high expression of proteases

identified from the cancer vs. normal (PRAD) analysis did not
have poorer disease-free survival as quantified by Kaplan−Meier
analysis (Fig. 1D), patients with high expression of proteases in
the AGGR list exhibited significantly poorer disease-free sur-
vival (Fig. 1E). This analysis underscores the importance of
selecting biomarkers with good prognostic performance, rather
than focusing solely on diagnosis. In an independent dataset
(16), high expression of proteases in AGGR corroborated the
same significantly poorer disease-free survival (SI Appendix, Fig.
S2), further validating these biomarkers.

Experimental Validation of Increased Protease Abundance and Activity
in Human Prostate Cancer. To confirm that the transcriptome-based
candidates were expressed, we applied a high throughput proteo-
mics assay (SOMAscan) (17). Five prostate tumor samples
(Gleason sums from 6 to 9) and five matched NAT samples were
analyzed for protein abundance (SI Appendix, Fig. S3), and the
results were compared with the two sets of transcriptomic hits (Fig.
2 A and B); we also screened for any candidates that were not
identified at the transcript level (Fig. 2C). In the case of the PRAD
list, all hits but one (KLK3, or PSA) were elevated in tumor
samples compared with their average abundance in NAT, but no
clear trends were observed in samples with higher Gleason scores
(Fig. 2A). The lack of PSA protein elevation in the tumor samples
highlights its poor performance as a biomarker to distinguish
cancer from other conditions. In contrast, larger effect sizes were
observed for the protein abundance of each of the proteases
listed in the AGGR set, except for KLK7; these results mirrored
the transcriptomic data, with clear differences in effect size ob-
served in higher Gleason score tumors (Fig. 2B). Finally, the
SOMAscan data identified two additional proteases (uPA and
PRSS3) that were more abundant in the tumor samples (Fig.
2C), and are well annotated in the literature as playing a role in
aggressive prostate cancer (9, 18). The modest effect sizes ob-
served could be explained by the comparison with NAT samples,
which includes reactive stroma, as well as the low tumor content
in several samples (SI Appendix, Fig. S3). In this vein, a recent
analysis of TCGA NAT samples relative to normal tissue (GTEx)
demonstrated that NAT samples do not fully reflect normal tissue
gene expression (19).
To examine protein expression of candidate proteases in a

tissue architecture-dependent method and compare abundance
in inflamed tissue, we selected one protease from each list and
type (MP and SP) and performed immunohistochemical (IHC)
staining on human prostate cancer tumor microarrays (TMAs).
MMP26 and KLK14 stained positively in tumor samples, with a
higher intensity of staining for KLK14 (Fig. 2D and SI Appendix,
Fig. S4). Notably, both proteases were expressed at elevated levels

Fig. 1. In silico identification of candidate proteases for an ABN library. (A)
Project workflow. Protease targets were identified, substrates were designed
and tested, and ABNs were generated to evaluate in vivo and for further
translational development. (B) Analysis of overexpressed proteases in prostate
cancer samples (PRAD)vs.NAT (Normal) or (C) inGleason7 to10 samples (AGGR)
vs.Gleason6 samples (Indolent).Hits fromeachanalysis are shown in red. (D and
E) Disease-free survival stratification in the TCGA cohort based on expression of
proteases in the (D) PRAD list and (E) AGGR list. (D and E: log-rank T test.)
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in tumors compared with normal, and with inflamed or hyper-
plastic samples (SI Appendix, Fig. S4); further, these proteases
stained positive in sections from metastases (Fig. 2 E and F).
Next, we sought to assay enzyme activity in prostate cancer

samples. Activity-based probes (ABPs) that specifically bind to
active hydrolases have been used to detect protease activity
in human samples (20). Thus, we applied a serine hydrolase
probe, fluorophosphonate-TAMRA (FP-TAMRA; TAMRA is a
fluorophore) to fresh-frozen samples, which maintain proteolytic
activity (15, 20), and labeled tumor cells in sections of a xeno-
graft tumor derived from a human prostate cancer cell line,
22Rv1 (SI Appendix, Fig. S5A). This labeling was mitigated by
the addition of a small molecule serine protease inhibitor called
AEBSF. When applied to a fresh-frozen human prostate cancer
TMA, FP-TAMRA labeled prostate cancer samples more than
normal control samples (Fig. 2G and SI Appendix, Fig. S5B).
As MP ABPs are less robust than serine ABPs, we used a FRET

peptide substrate-cleavage assay to assay for MMP activity in the
same tissue set we evaluated by SOMAscan. Given the minimal
tissue material available, each sample was evaluated with only a
subset of substrates in duplicate (SI Appendix, Fig. S6A). Multiple
substrates were cleaved to a greater extent in tumor samples (SI
Appendix, Fig. S6B). Consistent with protein increases detected by
SOMAscan, the cleavage signal elevation was modest, yet, in an-
alyzing the 26 sets of paired measurements, significantly higher
cleavage was detected in tumor samples (Fig. 2H). In the case of
two MMP-sensing substrates, T7 and T3 (13), signal was elevated
across the majority of tumor samples, indicating a pattern of in-
creased MMP activity in prostate cancer (Fig. 2 I and J).

Given our goal to establish an ABN library to both diagnose
and classify prostate cancer, we integrated our analyses thus far
and finalized a list of 15 proteases upon which to build our
nanosensor library (SI Appendix, Table S1).

Development of Nanosensor Library Responsive to Selected
Metalloproteinases and Serine Proteases. With an identified set
of MPs and SPs, we developed a panel of substrates to measure
their activity. We screened a panel of 58 FRET-paired peptide
substrates (labeled T1-58-Q, where Q denotes quenched; SI Ap-
pendix, Table S2) for cleavage by the 15 selected proteases. To ac-
count for background cleavage in circulation,we includedThrombin,
Factor Xa, and human plasma as negative filters (SI Appendix, Fig.
S7A). The library comprised peptides with diverse physiochemical
properties to provide broad coverage (SI Appendix, Fig. S7B), and
kinetic parameters of cleavage of the FRET-paired substrates by
recombinant proteases were measured and z-score normalized by
protease (Fig. 3A and SI Appendix, Fig. S7C andD). Substrates were
grouped by hierarchical clustering to remove substrates with over-
lapping cleavage patterns, as they would not provide any orthogonal
insight, resulting in a down-selected panel of 26 substrates.
As these substrates will be used in vivo, conjugation to a nano-

particle with robust accumulation in the prostate was needed. Thus,
we performed a biodistribution study with three fluorophore-labeled
carrier candidates and tested for their biodistribution following
i.v. injection. Relative to two iron oxide carriers, a multivalent
PEG polymer (SI Appendix, Fig. S8A) accumulated more in the
prostate (Fig. 3B), and less in spleen and liver (SI Appendix, Fig.
S7 B and C). Thus, we conjugated our peptide substrates to a
PEG core and tested their cleavage profile (Fig. 3C). While
most substrates were cleaved similarly with and without PEG
coupling, some discrepancies were observed, suggesting the

Fig. 2. Experimental validation of increased protease abundance and activity
in PCa. (A−C) SOMAscan assay results from five tumor and paired NAT samples
comparing protein abundance of (A) PRAD list hits, (B) AGGR list, and (C)
additional targets. (D) Representative images from IHC staining of proteases in
a prostate cancer TMA. Hyperp., hyperplasia, inflammation, benign samples. (E
and F) TMA staining score of both proteases. (G) Serine hydrolase ABP labeling
(red) in a human prostate cancer TMA. (Scale bar: 500 μm.) (H) Human cancer
samples and NAT samples were tested against FRET peptide substrates. Data
shown represent combined samples and substrates with paired cleavage data.
(I and J) FRET cleavage results from two metalloproteinase substrates in mul-
tiple tumor samples compared with NAT. (E and F, one-way ANOVA with
Tukey’s multiple comparison test; G, unpaired t test; H, Wilcoxon matched-
pairs test; I and J, paired t test; *P < 0.05, **P < 0.01, ***P < 0.001.)

Fig. 3. Development of ABN library responsive to selected metal-
loproteinases and serine proteases. (A) Hierarchical clustering was used to
identify similarly cleaved substrates,whichwere subsequently eliminated for a
second screen (red x). (B) Different nanoparticle formulations were injected
i.v. anddetectedby fluorescent scanofprostate 6hafter treatment. (Scalebar:
1 cm.) One-way ANOVA with Tukey’s multiple comparison test; ***P < 0.001.
(C) Selected substrates were coupled to PEG and exposed to recombinant
proteases, and cleavage data across the 26 PEG-peptide conjugates were z-
scored and clustered, as above. (D) Each substrate was assigned an MP and SP
score based onmean cleavage of each substrate across proteases in the family.

Dudani et al. PNAS Latest Articles | 3 of 6

A
PP

LI
ED

BI
O
LO

G
IC
A
L

SC
IE
N
CE

S
EN

G
IN
EE

RI
N
G

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1805337115/-/DCSupplemental


need for empirical evaluation of peptide cleavage in any given
formulation (SI Appendix, Fig. S9). Further mechanistic un-
derstanding of this variability may improve the development of
ABN technology by identifying optimal surface presentation.
Notably, analysis of the substrate cleavage profiles largely
grouped MPs separately from SPs (Fig. 3C). Furthermore, MP
and SP cleavage scores were calculated for each peptide and
revealed an orthogonal pattern to their cleavage specificity:
Peptides that were well cleaved by MPs were poorly cleaved by
SPs (Fig. 3D). Some substrates were cleaved specifically by a
single protease on our biomarker list, whereas others were
cleaved by multiple or all members of the enzyme family tested
(SI Appendix, Table S3). Ultimately, we removed all but two
substrates that were poorly cleaved by both enzyme families
from the final panel to yield a 19-plex ABN library that offers
broad coverage of relevant prostate cancer-expressed prote-
ases, and thus should enable predictive signature building.

Evaluation of ABN Library Against Cancer Cell Lines in Vitro and in
Vivo. We first evaluated the prostate cancer ABN library in vitro
using human cell lines. To select representative models, we used
protease gene expression across seven cancer cell lines from the
Cancer Cell Line Encyclopedia (CCLE) (Fig. 4A). Hierarchical
clustering of these data grouped the cell lines based on androgen
receptor status, validating our hypothesis that protease expression

correlates with clinically meaningful prostate cancer status (Fig.
4A). We noted that the PC3 cell line differentially expressed many
of the proteases included in the AGGR list that discerns tumors
by Gleason stage (SI Appendix, Table S1). Further, the PC3 line is
undifferentiated, AR−, PSA−, has metastatic potential, and is
derived from a bone metastasis (21). In contrast, the 22Rv1 cell line
is poorly differentiated, AR+, PSA+, lacks metastatic potential,
and is derived from serial passaging of a primary tumor. We
performed a transwell matrigel invasion assay and observed
that PC3 exhibits greater invasion capacity than 22Rv1, and was
significantly inhibited by broad-spectrum protease inhibitors,
suggesting this invasion was proteolytically driven (Fig. 4B).
Given their distinct protease profiles, we selected the 22Rv1 and

PC3 lines to test the activity of the ABN library, and quantified
cleavage of the 19-plex fluorogenic ABNs in supernatant. Consis-
tent with the library design, overall cleavage activity for both lines
was reduced in the presence of marimastat (MMP inhibitor) or
AEBSF (serine protease inhibitor), but not E64 (cysteine protease
inhibitor) (Fig. 4C and SI Appendix, Fig. S10). Additionally, there
were cell line-specific cleavage patterns, with greater overall
cleavage observed in the PC3 cells (SI Appendix, Fig. S8 A and B).
To evaluate whether the panel of protease-responsive sub-

strates can detect and classify disease in vivo, we formulated
substrates with urinary reporters to generate in vivo ABNs.
Based on our previous work (22, 23), we initially barcoded one
ABN sensor using a stable biotinylated D-stereoisomer of glu-
tamate fibrinopeptide for detection (SI Appendix, Fig. S11A and
Table S2). These short peptides have previously been shown to
reliably accumulate in the urine following proteolytic liberation
from the carrier nanoparticle. We optimized the time point of
urine collection by tracking urine signal generation in healthy mice
and identified the optimal collection window to be between 0 min
and 60 min postinjection (SI Appendix, Fig. S11B). Additionally,
we observed no difference in signal when a second injection was
administered to healthy mice 2 wk later (SI Appendix, Fig. S11C).
In mice bearing tumor xenografts derived from 22Rv1 cells,

the ABNs accumulated in the tumors (SI Appendix, Fig. S11D).
We detected an increased urinary signal from reporters liberated
by proteolysis of the T7 substrate in 22Rv1 xenograft-bearing
mice (Fig. 4D), and the performance of the sensor was equiva-
lent when coupled to an alternately barcoded reporter (SI Ap-
pendix, Fig. S11E). To confirm the signal increase was due to
proteolysis in the tumor, we tested the protease activity of tumor
homogenates ex vivo and observed that T7 sensor cleavage was
diminished in the presence of MMP inhibitor marimastat (Fig.
4E). We also performed an in vivo protease activity imaging
study using a red-shifted FRET paired T7 substrate, which
showed greater fluorescence signal in the tumor compared with
the liver (SI Appendix, Fig. S11F and Table S2).
Having achieved this proof-of-concept urine monitoring of

protease activity with a single substrate, we tested the entire
ABN library in vivo with an emphasis on identifying reporters to
differentiate mice bearing more aggressive (PC3) versus less
aggressive (22Rv1) xenografts. To quantify cleavage of the entire
library in urine, we barcoded the substrates using a next gener-
ation of mass-encoded reporters built upon our previous isobar
coded reporters method (SI Appendix, Fig. S12A) (13). This
reengineered sensor library enables increased multiplexing by
uniquely labeling each peptide with stable 13C and 15N atoms,
allowing for quantitation of reporter barcodes across a large
dynamic range using liquid chromatography−tandem mass
spectrometry (SI Appendix, Fig. S12 and Table S4).
To account for variability in glomerular filtration rate, urine vol-

ume, and hydration state, we coinjected a free reporter (not coupled
to PEG). We serially administered the 19-plex ABN library i.v. to
PC3 tumor-bearing mice over the course of tumor development. As
tumors increased in size, we observed an increase in the aggregate
urine signal, expressed as the sum of all disease-sensitive reporters
normalized to the coadministered free reporter (Fig. 4F).
Next, we sought to determine the ability of the 19-plex li-

brary to classify PC3 from 22Rv1 tumor-bearing mice. Using the

Fig. 4. Evaluation of prostate 19-plex ABN library in vitro and in vivo. (A)
Protease expression across prostate cancer cell lines from CCLE. (B) Matrigel
invasion assay performed with PC3 and 22Rv1 cells. PI, protease Inhibitor
mixture. (Scale bar: 20 μm.) (C) The 22Rv1 supernatantwas incubatedwith the
fluorogenic ABN library, and fluorescence increase was measured with or
without marimastat (marim), AEBSF, or E64 inhibitors. (D) Urine signal de-
tected 1-hpostinjectionof PEG-T7-B inmicewithorwithout 22Rv1 xenografts.
(E) Ex vivo cleavage signal of the T7 reporter by 22Rv1 tumorhomogenates. (F)
Aggregate urine signal after injection of the full 19-plex library with mass-
encoded barcodes in mice bearing PC3-derived xenografts. (G) Mean nor-
malized reporter signal changes from healthy mice were calculated, and the
difference between PC3 and 22Rv1 is plotted for each reporter. (B, C, E, and F,
one-way ANOVA with Tukey’s multiple comparison test; D, student’s t test;
*P < 0.05, **P < 0.01, ***P < 0.001.)
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mass-encoded reporters to examine the cleavage of each indi-
vidual sensor, we focused on an early time point and observed
that several substrates were differentially cleaved between ani-
mals bearing similarly sized xenografts (∼100 mm3) from the
more (PC3) versus less aggressive (22Rv1) cell lines (Fig. 4G and
SI Appendix, Fig. S13). Overall, the cleavage profile differences
between the two cohorts agree with each cell line’s protease
expression patterns (Fig. 4A) and the substrate specificity of each
protease (Fig. 3C). For example, substrates T24 and T39 show
higher relative urine signal change in mice bearing PC3 xeno-
grafts compared with 22Rv1 xenografts; in vitro, these substrates
are cleaved by proteases overexpressed in PC3 cells, MMP13 and
uPA. Other substrate sensors that are predominantly cleaved by
proteases expressed by 22Rv1 cells show preferential signal
generation in 22Rv1-bearing mice; for example, T40 and T51 are
cleaved by MMP26 and KLK4, respectively.

An Integrin-Targeted ABN Library Subset Robustly Classifies Aggressive
Prostate Cancer. One advantage of a highly multiplexed library is
the capacity to nominate a smaller subset of sensors for a
specific application. We integrated the results of testing the 19-
plex library in vitro (fluorogenic) and in vivo (mass-encoded)
against PC3 and 22Rv1 cells to select a minimal subset of ABNs
for a more practical diagnostic platform with simpler urinary
readouts (23).
As stated above, urinary reporters released from T24 and T39

sensors, which are selectively cleaved by MMP13 and uPA (SI
Appendix, Fig. S14A), were elevated in PC3-bearing mice com-
pared with 22Rv1mice and were also cleaved differentially by PC3
cell supernatants in vitro (SI Appendix, Fig. S10). Consistent with
this result, PC3 flank xenografts expressedMMP13 and uPAmore
than 22Rv1 flank xenografts (Fig. 5A). Interestingly, both of these
proteases play a role in bone metastasis, which is the source of the
PC3 cell line (24), and also a common site of metastasis for pros-
tate cancer.We also nominated T7 for our targetedABNpanel, as
it gave rise to urine signals in both 22Rv1 and PC3 mice and was
used in our earlier optimization experiments.
Noting that the effect sizes we observed were small, consistent

with the untargeted nature of our nanosensors, we sought to
increase the performance of our selected subset of sensors by
using tumor-targeting peptides. We have previously shown that
adding integrin-targeting, tumor-penetrating peptides can in-
crease performance of ABNs (15). A cyclic form of RGD, iRGD,
enables greater tumor penetration and delivery by binding αvβ3/
β5 integrins (25). After confirming that αv integrins were over-
expressed in human prostate cancer (26) by staining a TMA (Fig.
5B and SI Appendix, Fig. S14B), and that both PC3 and 22Rv1
xenografts stained for high levels of αv integrins (Fig. 5C), we
modified our ABN design to incorporate iRGD. We initially
tested whether coupling iRGD to the ABN increased perfor-
mance of T7 nanosensors in mice bearing 22Rv1-derived xeno-
grafts at 100-mm3 aggregate tumor burden. Signal derived from
iRGD-modified T7 ABNs was significantly greater than that
produced by unmodified ABNs (Fig. 5D).
Guided by this positive test, we next produced a three-plex of

iRGD-modified ABNs (iRGD-ABNs) using substrates T7, T24,
and T39 (SI Appendix, Table S2). To simplify urinalysis, these
ABNs were designed to release biotinylated urinary reporters to
enable ELISA-based readouts. Following i.v. injection of the
three-plex iRGD-ABNs, the combined urine reporter signal was
elevated in both 22Rv1-bearing and PC3-bearing animals com-
pared with controls (Fig. 5 E, Left and F, Left). Notably, this
urine diagnostic sensor increase was both significant and more
robust than serum PSA elevation in both cohorts (Fig. 5 E, Right
and F, Right). The pattern is more striking in PC3-bearing mice
as this tumor is PSA negative (SI Appendix, Fig. S14 C and D),
suggesting the combination of signal amplification from protease
activity and concentration into urine concentration could be
more predictive than serum biomarkers (15). Additionally, PSA
measurements in mice may overestimate its sensitivity, as there is
no mouse homolog of PSA (27).

We next tested whether the three-plex iRGD-ABNs could
classify distinct prostate cancer tumors. When the individual
reporter readouts were compared, mice bearing PC3 tumors
gave rise to significantly greater cleavage of both the uPA (T39)
and MMP13 (T24) substrates relative to 22Rv1 (Fig. 5G), con-
sistent with the relative protease expression profile of the cell
lines. Both sets of tumor-bearing mice generated T7 urine signals
that were elevated relative to control animals, but this sensor
readout did not classify between the two cohorts. Based on ROC
curve analysis, the T39 and T24 ABNs classified the mice bearing
the more aggressive PC3-derived tumors as distinct from 22Rv1-
bearing mice (Fig. 5H). Importantly, the sum of the uPA and
MMP13 substrate signals significantly increased the classification
power of the nanosensors.
Finally, a common complication of existing prostate cancer

biomarkers is the high rate of false positives due to comorbid-
ities, such as BPH and prostatitis (1). We sought to assess
whether our three-plex ABNs were similarly susceptible to
comorbidities by evaluating them in nonobese diabetic mice that
develop prostatitis and also display prostatic hypertrophy as they
age (28, 29). At 20 wk of age, prostatic hyperplasia and immune
cell infiltration were noted in the prostate (SI Appendix, Fig. S15
A and B), but urine signal was not elevated in the older mice (SI
Appendix, Fig. S15C), highlighting that these diagnostic tools are
both sensitive and specific. This model represents an initial step
toward defining the specificity of ABNs in animal models. This

Fig. 5. Integrin-targeting of a subset of ABN library for increased sensitivity.
(A) IHC staining for uPA and MMP13 in PC3 and 22RV1 tumor xenograft
sections. (B) The αv integrin staining of a prostate cancer TMA. (C) Positive
staining of αv in both 22Rv1 and PC3 sections. (Scale bar for A and C: 50 μm.)
(D) Urine signal in 22Rv1-bearing mice after injection of iRGD-modified or
unmodified PEG-T7 ABN. (E and F) Combined urine signal from multiplexed
iRGD ABNs (T7, T39, and T24) was evaluated in (E) 22Rv1 and (F) PC3 xeno-
grafted mice (left half of each graph), in parallel with serum PSA testing in
the same animals (right half of each graph). (G) Urine signal from the mice
shown in E and F presented for each of the three-plex substrates. (H) ROC
curve analysis demonstrates robust predictive ability of T39 (AUROC = 0.814)
and T24 (AUROC = 0.771), which is enhanced when the two substrate signals
are combined (AUROC = 0.914, green). T7 provides poor classification
(AUROC = 0.543) between the two groups. Dashed line represents an
AUROC of 0.5, and a perfect AUROC is 1.0. (D, student’s t test; E and F, one-
way ANOVA with Tukey’s multiple comparison test; G, two-way ANOVA
with Tukey’s multiple comparison test; *P < 0.05, **P < 0.01, ***P < 0.001.)
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approach needs to be systemically evaluated in humans, but several
reports are encouraging, such as evidence of increased uPA activity
in cancer tissue versus BPH (30) and elevated plasma levels of
MMP13 and MMP9 in patients with cancer versus BPH (31).

Discussion
We applied a bottom-up approach to design, build, and test a
panel of ABNs to detect and classify prostate cancer. First, we
used transcriptomic and proteomic tools to nominate proteases
that identify and stratify prostate cancer in human samples. Next,
we designed substrates to detect these proteases and built an
ABN library using these substrates. The resulting 19-plex ABN
library was evaluated in vitro and in vivo using mass-encoded
barcodes for urinary analysis in cell line xenograft models. We
identified a pair of proteases that were differentially expressed in
the PC3 cell line. To increase performance, we modified a panel
of ABNs with iRGD to bind overexpressed integrins in prostate
cancer. The iRGD-modified ABNs robustly classified invasive
(PC3) from less invasive (22Rv1) tumor-bearing mice, and out-
performed PSA as a diagnostic biomarker in these models. These
ABNs did not produce false-positive results in a prostatitis mouse
model. Furthermore, our prior studies that were focused on en-
hancing sensitivity demonstrated the ability to detect sub-5-mm
ovarian cancer lesions using integrin-targeted ABNs (15).
While this diagnostic demonstration was restricted to flank xeno-

graft cell line models, our 19-plex library of sensors can be applied to
additional, representative models of prostate cancer, such as ortho-
topic tumors and the Hi-Myc mouse (32). Additionally, it would be
interesting to evaluate this library of ABNs as a pharmacodynamic
biomarker for androgen deprivation therapies. Further reduction to
the risk of false positive signals could be achieved by more in-depth
benchmarking of net protease activity against BPH and other
comorbidities. For example, a more systematic evaluation of the
degradome (proteases and inhibitors) of a range of tissue sources
and contexts using a systems biology approach could be informa-
tive, and build upon our existing analysis to improve the specificity
of the selected proteases used for prostate cancer detection.

Further refinement of peptide substrates and nanoparticle for-
mulation and dosing, such as to achieve s.c. (22) or oral delivery
(33, 34), could also enhance the library’s performance and enable
its practical application in prostate cancer patients to improve
management and outcomes. Finally, additional work needs to be
completed before clinical translation, including the study of sensor
specificity in the context of additional animal models of comorbidities
and in human samples, as well as testing for potential immuno-
genicity of ABNs. This work highlights the potential ability to
query biological and clinical states with ABNs.

Methods
Transcriptomic, SOMAscan, and Activity Analysis. Differential expression
analysis was performed on TCGA data using SAMseq. Survival analysis was
performed using cBioPortal. SOMAscan was performed at the Beth Israel
Deaconess Medical Center (BIDMC) Genomics Proteomics Core. Fresh frozen
prostate cancer tissue microarray was obtained from US BioChain (T6235201)
and stained with FP-TAMRA (88318; Sigma) at 1 μM in PBS.

Animal Models. All animal studies were approved by Massachusetts Institute
of Technology’s Committee on Animal Care (CAC) (Protocol 0417-025-20). Four-
to six-week-old male NCr nude mice (Taconic) were injected bilaterally with 3.5 ×
106 PCa cells per flank in a 1:1 ratio of complete media and Matrigel (354234;
Corning). Baseline urine measurement was obtained before xenograft implan-
tation. Histology sectioning and staining was performed at KI Histology Core.
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