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nanoparticles have had time to diffuse deep into the tissue. Results show that nanoparticles that
are designed according to these guidelines do not require fine-tuning of their kinetics or size
and can be administered in lower doses than classical targeted nanoparticles for a desired tissue
penetration in a large variety of tumor scenarios. In the future, similar models could serve as a
testbed to explore engineered tissue-distributions that arise when large numbers of nanoparticles

interact in a tumor environment.

© 2013 Elsevier Ltd. All rights reserved.

Introduction

Nanoparticles targeted to surface receptors that are over-
expressed in certain tumors have the potential to improve
specificity and intracellular delivery of therapeutic payloads
to cancer cells [1]. Their size, typically in the 5-200nm
range, enables them to leak out of angiogenic vessels
and accumulate in tumors [2]. Once in the tumor tissue,
nanoparticles must traverse the interstitial space to reach
all cells that require treatment [3]. This is a challenging
goal because high, uniform pressure in tumor environments
causes nanoparticle motion to be mostly diffusive [4,5]. In
addition, nanoparticles with large binding affinities, ampli-
fied by multivalent interactions, will accumulate in the
first cells they encounter after extravasation as depicted
in Fig. 1A. The resulting binding-site barriers, previously
demonstrated with antibodies [6] and recently with targeted
nanoparticles [7,8], prevent treatments from reaching cells
far away from vessels.

Efforts have been made to overcome transport bar-
riers that limit the accumulation of nanoparticles in
tumor tissue [4]. Solutions include increasing nanoparticle
circulation time [9], or activating transvascular trans-
port, and parenchyma penetration through the use of
tumor-penetrating peptides [10,11]." Rather than approach
nanoparticle design empirically, models by Thurber et al.
[6,12] and Wittrup et al. [13] are able to quantitatively
predict the impact of dosage, blood flow, extravasation,
diffusion, and binding kinetics on the distribution of anti-
bodies and macromolecules in tumors. Other models by
Ferrari et al. [14] focus on the targeting of nanoparti-
cles to the vasculature. To date, most models have been
used to investigate how existing nanoparticle designs impact
tissue distribution; the next step is to implement computa-
tional models that drive innovation by helping to explore
novel nanoparticle designs and offer the potential to yield
generalizable guidelines for a variety of tumor scenarios.
Furthermore, current models do not consider the ability of
targeted nanoparticles to accumulate at effective doses in
individual cancer cells given a specific therapeutic cargo.
Finally, researchers typically rely on deterministic models
that assume nanoparticles can be modeled as populations
that are not subject to stochastic variations.

Using a deterministic model, which is further validated by
stochastic simulations, we systematically explore nanopar-
ticle designs that result in binding-site barriers and propose
generalizable guidelines to avoid such barriers without
increasing the injected dose or fine-tuning nanoparticle
diffusion coefficients and binding kinetics. Rather than

1 See our video on nanoparticle transport in tumors: http://youtu.
be/gBYKkYzj7CKM.

consider all transport parameters that impact nanoparticle
distribution, we model a challenging representative tumor
scenario in which a defined low number of targeted nanopar-
ticles must accumulate to kill individual receptor-rich cells,
including those located furthest from the tumor vascula-
ture. Results show that many targeted nanoparticle designs
reported in the literature lead to superficial tumor penetra-
tion in this scenario. The therapeutic payload is taken into
account in calculating the number of nanoparticles needed
to affect tumor cells. Optimization of the deterministic
model shows that overcoming the barrier would typically
require large treatment doses to saturate cells near tumor
vessels before nanoparticles can penetrate deeper into the
tissue. Rather than fine-tune the size and binding affinity
of nanoparticles to improve tissue penetration, we augment
our models to explore novel design guidelines that rely on
delaying nanoparticle binding until after the nanoparticles
have had time to diffuse deep into the tissue. Results in
simulation show that nanoparticles designed following these
guidelines can accumulate at effective levels in all cells that
require treatment with the use of smaller injected doses
than would be necessary for conventional targeted nanopar-
ticles. The design guidelines are immediately generalizable
to a variety of tumor scenarios that account for variations
in surface receptor expression and recycling, drug encap-
sulation, number of nanoparticles, and the rate at which
nanoparticles accumulate in the tumor tissue. Furthermore,
we outline existing, established technologies that could
be used to implement these guidelines in reality. Beyond
deep tissue penetration, we aim to ultimately control the
distribution of nanoparticles in tissue with sufficient preci-
sion to accommodate heterogeneous treatment and imaging
needs. To this end, we propose the use of nanoparticles with
targeting moieties whose unveiling is a function of an envi-
ronmental stimulus rather than time or external triggers.
Using this strategy, we demonstrate in simulation that the
nanoparticles could achieve inverted internalization gradi-
ents by accumulating more in cells further away from the
vasculature. Such a distribution pattern could be useful to
deliver drugs deep into tumors.

Materials and methods
In silico models

Computer simulations can help engineer nanotreatments
by rapidly predicting experimental outcomes for a large
set of design parameters. To this end, we formulate both
deterministic and stochastic reaction—diffusion models to
simulate the transport, binding kinetics, and internalization
of nanoparticles in a section of tumor tissue.
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Figure 1  Model used to simulate tissue penetration and cellular accumulation of targeted nanoparticles. (A) Targeted nanopar-

ticles are at risk of accumulating mostly in cells close to the vasculature, leading to binding-site barriers. (B) Parameters used to
determine the number of injected nanoparticles that will reach the simulated tumor section. The tissue section model represents
a challenging scenario in which nanoparticles leaving vessels near the necrotic core of the tumor need to penetrate deep into
tumor tissue. (C) Reaction—diffusion model used to simulate the diffusion, binding kinetics, and cellular internalization of targeted
nanoparticles in tumor tissue. Free nanoparticles diffuse throughout the tissue with diffusion coefficient D. The species in the reac-
tion network are defined as NPg, free nanoparticles; NP;, internalized nanoparticles; R, receptors; and C, nanoparticle-receptor
complexes. k, and k4 are the association and dissociation rate constants and k; is the internalization rate constant.

The main challenge is to back out usable guidelines
that generalize across tumor scenarios and can therefore
be implemented in reality. Varying all the parameters that
impact nanoparticle transport is unrealistic and typically
results in a variety of regimes and tradeoffs that are diffi-
cult to translate to actionable guidelines. Instead, we focus
on a representative scenario, which embodies a challenging
tumor environment that would realistically be encountered
by targeted nanoparticles. Solutions to this scenario have
the potential to automatically generalize to many tumor
environments. Our focus is on scenarios that result in
binding-site barriers. Specifically, we consider the situation
depicted in Fig. 1B in which nanoparticles leaving a vessel
near the central, poorly perfused area of the tumor need to
penetrate deep into the tumor tissue up to a depth L, while
accumulating at levels sufficient to kill each of the N cells
along the way. Each cell is represented as a cubic region that
has a volume of S3, where S is the largest cell dimension.
The percent injected dose (PID) of drugs with high potency
P reaching the tumor section is sufficient to theoretically kill
or treat (e.g., through siRNA delivery) all cells if distributed
uniformly throughout the tissue. The PID is measured at a
predefined time T after the nanoparticle injection. Based on

the weight W of a mouse and the ratio of the entire tumor
volume Vr to the volume of the simulated tumor section $2
L, we can approximate the minimal injected dose (/D) of
drugs in mass per body weight needed to accumulate at PID
levels at time T after injection. Each nanoparticle encapsu-
lates a large number E of drug molecules with molar mass
M, resulting in a low number NPy of nanoparticles that are
present in the simulated tumor section for the predefined
injected dose of drug. To approximate a slow clearance of
the nanoparticles from the blood, the model is initialized
with NPy nanoparticles that enter the first cell region of the
tumor tissue section at a uniform rate over the duration of
the circulation time T¢. Nanoparticles diffuse through the
tumor tissue and bind to highly expressed receptors [15]
that are immediately recycled upon internalization of the
nanoparticles. We can approximate NP, as

PID-S2.L Ny
Vi  M.E’
where N, is the Avogadro constant.
The  reaction—diffusion model illustrated in
Fig. 1C describes the formation and dissociation of
nanoparticle—receptor complexes and the internalization

NPy = 1D - W .

(1)
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of nanoparticles in each cell of the tumor model [16].
The species in the reaction network are defined as NP,
free nanoparticles; NP;, internalized nanoparticles; R,
receptors; and C, nanoparticle-receptor complexes. Free
nanoparticles diffuse between cell regions with diffusion
coefficient D. The reaction network is:

NPr + R<¥c 5, NP, + R )

where k, and k4 are the association and dissociation rate
constants and k; is the internalization rate constant.

Both the stochastic and deterministic models proposed
here describe the population dynamics of nanoparticles in
tumors, and thus are less computationally expensive than
simulations of the movement of individual nanoparticles and
their interactions with other nanoparticles or receptors. The
stochastic model has a more legitimate physical basis than
the deterministic model: it captures fluctuations and corre-
lations in population levels that occur in reaction—diffusion
systems, and it realistically represents these populations
as integers that change by discrete amounts [13]. The
deterministic formulation is accurate for systems with large
populations whose fluctuations remain small relative to the
absolute population levels. This model represents the sys-
tem state as concentration fields that evolve continuously
according to partial differential equations. The dimension-
ality of the deterministic model is independent of the
population levels, and for large populations it is faster to
numerically solve this model than to simulate the stochas-
tic model. Hence, when accurate, the deterministic model
is more suitable as a tool for quickly predicting the system
behavior for a large set of parameters. In this paper, we
use deterministic models to simulate all experiments and
validate key results using a stochastic simulator.

Deterministic model

The deterministic model of the system consists of a set of
reaction—diffusion partial differential equations (PDEs) that
govern the expected spatiotemporal evolution of the dif-
ferent species populations in the one-dimensional domain
of interest. The population levels of free nanoparticles,
NPg(x,t), internalized nanoparticles, NPj(x,t), receptors,
R(x,t), and nanoparticle-receptor complexes, C(x,t), are
defined at each position x< [0, L] at each time t=0 and
are expressed in units [number/cell]. The equations for the
PDE model are:

%:D-VE-NPF—RD-NPF-Rﬁ—kd-C
gz—k,,-NPF-RHd-CH;-c
g:&-NPF.R—kd,c—k;-c
a’::':k.-.c,

NP, represents a direct measure of the number of
nanoparticles present in the simulated tumor section after
extravasation and clearance at time T. Focus is on modeling
where these nanoparticles distribute within the simulated
tumor tissue. Initially, no nanoparticles are present in the
domain, and Ni receptors are distributed uniformly through-
out each of the cells. The model boundary condition at x=0
is defined as a constant-rate extravasation of the NPy free
nanoparticles into the first cell region over time period T¢.
Due to the local symmetry of the tumor environment at the
micro-scale, we assume that nanoparticles that diffuse out
of the tumor section at x=L are replaced by nanoparticles
flowing in from adjacent tissue. Hence, a Neumann boundary
condition is applied at x=L:

ONPg
“at (x, t) =0,

x=L

t=0

The deterministic model is numerically integrated in MAT-
LAB (Mathworks) using a finite difference method with 20 or
more uniformly spaced nodes.

Stochastic model

The stochastic model of the system takes the form of
a reaction—diffusion (or multivariate) master equation
[17,18]. In this model, the spatial domain is discretized
into cubic subvolumes that are chosen small enough to
be approximated as well-mixed regions [19]. The pop-
ulations of different species in each subvolume change
when chemical reactions occur inside the subvolume or
when nanoparticles diffuse into or out of the subvolume.
A stochastic simulation algorithm can be used to com-
pute numerical realizations of the species populations over
time in a way that takes into account the fact that these
populations are integer-valued and exhibit randomness in
their time evolution [20]. Various spatial stochastic simu-
lators for reaction—diffusion systems have been developed
in recent years [21]. We implement a stochastic simulator
that is based on the freely available Stochastic Simulator
Compiler (55C) [22].2 Briefly, for each cell region, the sim-
ulator determines how probable a reaction is compared
to other reactions and when the next reaction should
occur. Based on the reaction network described in Eq.
(2), associations happen with probability k,-NPr-R per unit
time, dissociations with probability kq-C per unit time,
and internalizations with probability k;-C per unit time.
Diffusion is modeled as a reaction in which a free nanopar-
ticle jumps between neighboring cell regions with rate
constant D/S?; this occurrence happens with probability
2NP:-D/S? per unit time. The next reaction should there-
fore happen after an exponentially distributed random time
with mean 1/(k,-NPr-R + kg-C + k;-C + 2NP-D/S?) seconds and
should randomly be chosen proportionally to the probability
rate at which each reaction happens. After each reaction,
the species populations and reaction probability rates are
updated.

Z stochastic Simulator Compiler: http://web.mit.edu/irc/ssc/,
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Table 1 Nanoparticle radii and dissociation constants reported in the literature.
# r [nm] Kp [nM] Scenario Ref.
1 38 2.84-9.08 Iron oxide nanoparticles targeted to FKBP12 [26]
2 4 0.03-2.00 Dendrimer-based nanodevices targeted to [25]
folate receptors
3 81, 87 0.03, 0.23 Gold nanoparticles targeted to human [27]
transferrin
4 94.2, 102.2, 128.9, 117.4 1.98, 2.59, 0.59, 0.38 Liposomal nanoparticles targeted to RGD [28]
5 120 0.18—11.76 Liposomes targeted to EGFR [29]
6 2, 10, 25, 40, 50, 70 0.09, 0.005, 0.0009, Gold nanoparticles targeted to ErbB2 [30]
0.0004, 0.0003, 0.00015
7 90 0.017, 0.04, 0.092, 0.15, Patchy micelles targeted to folate receptors [31]
0.2, 3.1, 3.3
8 20, 100, 200, 500 142, 3.83, 0.097, 0.026 Polystyrene nanoparticles targeted to [32]
endothelial cells
Results receptors [34] such as folate on KB cells [25] or HER-2

Binding-site barriers

Providing guidelines for the improvement of nanoparticle
design requires an understanding of which design param-
eters result in binding-site barriers. We focus on exploring
parameters that have a direct effect on the distribution of
nanoparticles in tissue after extravasation and can be modi-
fied through engineering. For example, diffusion coefficients
can be modified by changing the size of nanoparticles [23,24]
or by relaxing the extracellular matrix [4], while binding
kinetics can be modified by acting on multivalency and
engineering targeting ligands [25]. Toward this end, we
identified a relevant range of nanoparticle radii r and disso-
ciation constants, defined as Kp = ky/k,, from the literature
(Table 1).

Diffusion coefficients D were determined using the
Stokes—Einstein equation [33] based on nanoparticle radii
ranging from 2nm to 500nm and viscosities ranging from
values for water to values for tumor tissue (10-fold increase
in viscosity [4]). We simulated the effect of combinations
of D and Kp in a representative challenging tumor scenario
in which liposomes carrying high loads of a cytotoxic drug
doxorubicin (e.g., Doxil) are targeted to over-expressed

Table 2 Parameter values for the simulation test-case scenario.

in certain breast cancer cell lines [35]. The values of the
parameters for the scenario are given in Table 2.

Particles are required to penetrate at least L=200pm
into the tissue [4], targeting 20 cells along the way. Only 1%
of the injected dose reaches the tumor, which is typically
the lower bound in tumor tissue accumulation for targeted
nanoparticles [13,36—38]. The PID is measured after T=48h
to ensure that the nanoparticles are able to diffuse far away
from the vasculature. The number of internalized nanopar-
ticles estimated to theoretically induce cytotoxicity in a
single cell was calculated to be 600 using the equation
NP_=(P-S3-N4)/E, where N, is the Avogadro constant. Setting
NPy =20NP, in Eq. (1) corresponds to a local concentration
of 10pM in all 20 cell regions of the scenario, which is
the 1C90 of doxorubicin. An injected dose ID=3.3 mg/kg of
doxorubicin is computed to be sufficient to kill all 20 cells
if the nanoparticles distribute uniformly along the linear
section of tumor in the model. However, to increase the
likelihood that sufficient numbers of nanoparticles reach
all cells, we administer a dose of 33mg/kg, 10 times in
excess of the theoretically sufficient dose. This corresponds
to an initial nanoparticle population in the tumor model of
NPy =1.2044 x 10°, corresponding to a maximum concentra-
tion of 200 nM (for the nanoparticles) or 2 mM of doxorubicin

5 Largest cell dimension 10 pm

Nr Number of receptors per cell 108

w Animal weight 20g

1D Injected dose of doxorubicin 33meg/kg
PID Percentage of injected dose in tumor 1%

£ Number of molecules of doxorubicin per particle 104

P 1C90 of doxorubicin 10 pM

M Molar mass of doxorubicin 543.52 g/ mol
Vr Tumor volume 5mm x 5mm x 5mm
i) Desired tissue penetration depth 200 pm

T Time at which PID is measured 48h

Te Circulation time of the nanoparticles 24h
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in a cell region. As a reference, the typical injected dose for
liposomal doxorubicin in humans ranges from 20mg/m? to
70 mg/m? [39], corresponding to a mouse equivalent range
between 6.6 mg/kg and 25 mg/kg [40]. Doses up to 55 mg/kg

that the identical results from both models validate the use
of the deterministic model for prediction and optimization.
Based on experimental work by Hong et al. [25] and Thurber
et al. [6], we maintained the dissociation and internaliza-

tion rate constants at k;=10"1s1, k;=10"° s while varying
k, in the range [10%, 101 M~'s~!. These are the parameter
ranges used throughout the paper, unless stated otherwise.
Fig. 2B shows the penetration profiles of several nanopar-
ticle formulations. As further validation, previous models

have been shown to cause reversible weight loss in mice
[41].

Fig. 2A shows the number of cells that are dead after
48 h of treatment as a function of D and Kp, simulated using
both the stochastic model and the deterministic model. Note
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Figure 2 Identification of binding-site barriers. (A) Number of cells killed depending on the nanoparticle formulation (i.e., diffu-
sion coefficient D and dissociation constant Kp = kq/k,) with k, fixed and k, varying. Complete tissue penetration is assumed when
each of the 20 cells in the model internalizes the number of nanoparticles required to kill one cell (estimated lethal cell dose),
which for this scenario is over 600 nanoparticles. Results obtained using the deterministic model are validated using a stochastic
simulator. (B) Tissue penetration profiles determined using a stochastic simulator for four combinations of the diffusion coefficients
and dissociation constants labeled in (A). (C) Number of cells killed depending on the nanoparticle formulation with k, fixed and k4
varying (Kp=kgq/kg). D) Representative nanoparticle formulations identified in the literature (Table 1). Diffusion coefficients were
calculated based on nanoparticle radii and viscosities ranging from values for water to values for tumor tissue rich in collagen fiber
[4]. Many formulations in the literature would perform poorly in our test scenario due to binding-site barriers, which occur for each
parameter set (Kp, D) below the dashed line. (E) Minimum injected dose of chemotherapy required to theoretically kill all cells in
the simulated scenario for each nanoparticle formulation. Resulting high doses could cause systemic toxicity in mice [41].
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by Thurber et al. [6] for antibody penetration showed that
treatments with D=3 x 107 cm?/s and Kp=8nM were able
to penetrate a depth of at least 200 um into tumor tissue
while antibodies with Kp=30pM were not, which is consis-
tent with findings presented here. The results show that
most of the nanoparticle formulations considered are not
capable of killing all 20 cells in the model. Nanoparticles
with a high binding affinity (Fig. 2B(a,c)), regardless of their
speed, accumulate only in cells near the vasculature, and
slow nanoparticles (Fig. 2B(c,d)) fail to accumulate at lethal
levels in cells farthest from the vasculature. Fast nanopar-
ticles with a low binding affinity are able to accumulate
at lethal levels in all cells (Fig. 2B(b)). However, lowering
the affinity beyond the range explored here could result in
nanoparticles that are unable to accumulate at lethal levels
in tumor cells. Simulations show this to be true for nanopar-
ticles with dissociations constants in the micro-molar range.
For the remaining formulations, a balance between nanopar-
ticle speed and binding affinity is required to treat cells
throughout the entire tumor section. Other studies have sug-
gested that multivalency mostly affects the dissociation rate
rather than the association rate [42]. In Fig. 2C we show
that maintaining k, =10*M~" s~ constant and varying kg in
the range [10-%,1] s~! yields similar results. Overall, many
of the targeted nanoparticle formulations in the literature
would result in binding-site barriers in the scenario pro-
posed here (Fig. 2D and Table 1). To overcome this barrier,
nanoparticles would require a reduction in size to produce
a higher diffusion coefficient or a fine-tuning of their bind-
ing affinity. For liposomes, size variation can be achieved by
choosing the appropriate extrusion membrane [43]. Reduc-
ing the valency of the targeting ligand or engineering the
ligand itself can reduce affinity [25,44]. For many nanopar-
ticles formulations however, size and affinity manipulations
are time-consuming and detrimental to nanoparticle
function [45].

The common solution to overcome binding-site barriers
is to increase the injected dose, ID. Saturating the first
cells after extravasation could enable excess nanoparticles
to overcome the barrier and penetrate deeper into the tis-
sue. To test this hypothesis in simulation, we determined
the minimum injected dose needed for each of the 20 cells
to accumulate sufficient internalized nanoparticles to kill
an individual cell, NP., for each parameter set (Kp, D).
Using branch and bound optimization, we computed this
minimum injected dose as the value in the range [/Dwia,
IDimax] = [0,33000] mg/kg that maximizes the following func-
tion:

ID — ID i
I'Drnax = llDmin
0 otherwise.

| if all cells are dead after 48 h
D) = 4

Cell death was predicted from the deterministic model,
which was initialized with the free nanoparticle popula-
tion NPy that corresponds to the computed ID according
to Eq. (1). As shown in Fig. 2E, 400-fold increases
in dose from 33mg/kg would be required to overcome
binding-site barriers for several nanoparticle formula-
tions, leading to systemic toxicity for the treated mice
[41].

Time-dependent binding

Rather than increase the injected dose or fine-tune nanopar-
ticle formulations, we propose a generalizable solution to
achieve targeted deep tissue penetration with a broad range
of nanoparticle designs. We consider a strategy in which
nanoparticles are initially prevented from binding while
diffusing through tumor tissue. The nanoparticle binding
functionality is then restored as a function of time or an
external human-operated trigger such as light, heat, mag-
netic fields, or injected chemicals (Fig. 3A) [46]. In the
simplest form of this implementation, nanoparticles would
be prevented from binding for a duration Tgeq, before
entirely regaining their original binding capabilities. This
scenario is modeled by setting the association rate con-
stant to zero until time Tgeqy and to k, thereafter according
to a step function. For each parameter set (Kp, D), we
determined the minimum values of Ty, that lead to the
accumulation of a lethal dose of internalized nanoparticles
in each cell. Using line-search optimization, we computed
the minimum T e, as the value in the range [0, T;4] =[0,48]
h that maximizes the following function:

_ Toey
f {Tdeiw] =4 Tmax
0 otherwise.

if all cells are dead after 48h

The minimum T, values that lead to the death of
all target cells for each parameter set (Kp, D) are given
in Fig. 3B. Fast-diffusing nanoparticles with D=10"%, 107,
108 cm?/s can unveil their binding-moieties as early as
Taetay = 3000, 3h20, 4h55 after injection to resultin full tissue
penetration and target cell death. Slower-diffusing nanopar-
ticles with D=10-? cm?/s should wait at least 17h15 as shown
in Fig. 3C. A single binding delay of 17h15 therefore has the
potential to enable all nanoparticle formulations to over-
come binding-site barriers in our simulated scenario without
increasing the injected dose. While most nanoparticle for-
mulations are retained in the tumor environment due to the
enhanced permeability and retention effect [4,43], small
nanoparticles that are prevented from binding for too long
risk diffusing to the rim of the tumor where the pressure dif-
ference between the tumor and the surrounding tissue will
irreversibly drive them out of the tumor [5,8,47]. As a refer-
ence, it would take the fastest-diffusing nanoparticles in our
model approximately 34 h to diffuse from the center of the
simulated tumor to its rim. If fast tissue clearance is a con-
cern, bioengineers can implement two binding delay regimes
of 4h55 for fast nanoparticles (D=10-%, 107, 10-8cm?/s)
and 17h15 for slow nanoparticles. Another concern is non-
specific uptake of veiled nanoparticles by macrophages
present in the tumor environment that could prevent their
diffusion deep into the tissue. Based on research by Thurber
et al. [48], we estimate the rate of non-specific cellular
uptake by macrophages to be slow relative to diffusion, even
for the smallest diffusion coefficient of 10~* cm?/s consid-
ered here.

The representative scenario used to design these guide-
lines was chosen to be challenging. By relaxing the different
parameters of the scenario, we show that the delayed bind-
ing strategy can directly be generalized to a large variety
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Figure 3  Time-dependent binding strategy for targeted deep tissue penetration. (A) The delayed binding strategy allows nanopar-
ticles to diffuse deep into the tissue before unveiling their targeting moieties as a function of time or an external trigger. (B) Minimum
binding delays leading to the death of all target cells for each nanoparticle formulation. For each diffusion rate, we note the min-
imum Tgeq value that would result in death of all target cells across each dissociaiton constant (dashed lines). (C) Stochastic
simulation of the delayed binding strategy for a nanoparticle formulation with the T4ey value indicated in (B). The delay in binding
can clearly be seen by the lack of internalization during the first hours of the simulation. A lethal dose in a cell is reached when the
cell accumulates over 600 nanoparticles. (D) Impact of the scenario on the prevalence of binding-site barriers, as predicted by the
deterministic model. Each simulated scenario uses an injected dose of 33 mg/kg, does not implement a binding delay, and varies
one of the following parameters: nanoparticle circulation time, receptor recycling, receptor expression, nanoparticle accumulation
in the tumor, and drug loading. Binding-site barriers arise in all scenarios. (E) Delaying binding by 17h15 for all nanoparticle formu-
lations leads to death of all target cells in all scenarios without changing the injected dose of 33 mg/kg, thereby demonstrating the
generalization of our guidelines to a large number of tumor environments.
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of tumor environments without modification. In particu-
lar, we consider scenarios where the cell receptors are not
recycled, the number of cell receptors is reduced (R=10%),
the PID of nanoparticles reaching the tumor is increased
(PID=10%), nanoparticles accumulate immediately in the
tumor section (T.=0), and nanoparticles are loaded with
lower amounts of drug (E=10%). The number of cells killed
for each parameter set (Kp, D), as predicted by the deter-
ministic model with no binding delay and ID=33 mg/kg, is
plotted in Fig. 3D. The figure shows that while these scenar-
ios should intuitively reduce the prevalence of binding-site
barriers, the majority of nanoparticle formulations still
result in poor tissue penetration and cellular accumulation.
Fig. 3E shows that delaying the binding by 17h15, as sug-
gested by our guidelines, results in complete cell death
in all scenarios considered. We further tested the impact
of slow drug release by nanoparticles implementing the
delayed binding strategy. Results show that nanoparticles
that are only able to deliver 30% of their cargo within 48 h
are still able to kill all cells for formulations with fast dif-
fusion (D=10"%, 10~7, 10~8cm?/s) while killing half of the
cells when the diffusion is slow (D=10-? cm?/s).

Space-dependent binding

Beyond targeted deep tissue penetration, we aim to ulti-
mately control the spatial distribution of nanoparticles in
tissue. In our simulations, more nanoparticles internalized
in cells located near the vasculature than in cells present
at deeper sites in the tissue. Inverting this gradient, i.e.,
achieving low amounts of internalized nanoparticles near
the vasculature and high amounts deep in the tissue, could
be beneficial to deliver large doses of drugs deep into
tumors. To produce this inverted gradient, the unveiling of
binding-moieties should rely on local, spatially-dependent
signals in the environment rather than on a global exter-
nal signal (time- or human-triggered). In the simplest case,
nanoparticles can react to natural gradients in the tumor
environment based on pH or enzymatic activity [7,49-55].
To account for the impact of the environment, we intro-
duce a new species in our reaction—diffusion system called
unveilers, represented with the symbol U, and a species
of veiled freely diffusing nanoparticles denoted by NPy.
Unveilers are abstractions for elements that could be used
as triggers for unveiling binding moieties. As an exam-
ple, we consider a scenario where the population level
of unveilers, U(x,t), is initially distributed in the tumor
model according to U(x,0)=cx, where ¢ is an arbitrary con-
stant and x is the distance from the vessel. We then add
a reaction to the network described in Eq. (2) in which a
veiled nanoparticle NPy that encounters an unveiler U will
become an unveiled nanoparticle NPr at rate constant k,.
Fig. 4 shows a tissue penetration profile computed by the
stochastic simulator for the original test-case scenario with
c=5x 107, D=10"8cm?/s, Kp=0.01nM, k,=6 x 102M s,
and ID=33 mg/kg. Without unveilers, these parameter val-
ues result in a binding-site barrier, as shown in Fig. 2A.
As illustrated in Fig. 4, the unveilers cause nanoparticles
to internalize most in cells located far from the vascul-
ature, producing an inverted internalization gradient and
killing cells deep in the tumor tissue. In the future, a better

tissue penetration profile lethal

hours
# internalized
nanoparticles

0
5 10 15 20

cells

Figure 4 Space-dependent binding strategy for targeted deep
tissue penetration. Nanoparticles are engineered to unshield
targeting moieties as a function of their environment. The
stochastic simulator was used to obtain a tissue penetration pro-
file for nanoparticles engineered to accumulate most in cells
far away from the vasculature; such inverted internalization
gradients could help deliver drugs deep into tumors.

understanding of the tumor environment and the binding
kinetics of nanoparticles could lead to increased control
over nanoparticle distribution in tumor tissue. This level of
control could be useful to create nanoparticle-based bea-
con systems or maps that point out areas of interest in the
body or produce communication signals that can be sensed
by other nanoparticles [56].

Discussion

Using computational frameworks, we are able to provide
generalizable guidelines for the design of novel targeted
nanoparticles that can accumulate in cells located deep in
tumors. Building on these guidelines, the next step is to
engineer nanoparticles in reality with the identified fea-
tures. Bioengineers have already designed and constructed
a number of nanoparticles that are able to shield targeting
moieties, or non-specific cellular uptake mechanisms medi-
ated by charge or cell penetrating peptides, as a function of
protease activity or pH levels in tumor environments [8,49].
Interestingly, most of these nanoparticles were intended
to increase the macroscopic accumulation of nanoparti-
cles in tumors as opposed to healthy tissue [50,52,57—61].
Results reported here suggest that repurposing these shiel-
ding mechanisms could result in a generalizable strategy
to improve micro-scale distributions of nanoparticles within
the tumor tissue itself. In particular, nanoparticles engi-
neered by Harris et al. [52] are able to unveil most targeting
moieties in tumor environments within 24 h based on enzy-
matic activity and have shown increased tumor penetration
as a result. In a similar fashion, MMP-activatable cell-
penetrating peptides were shown to penetrate well beyond
the blood vessels from which they extravasate [57,59].
Layer-by-layer nanoparticles described by Poon et al. [50]
are able to unveil a positively charged nanoparticle sur-
face as a function of pH within the tumor environment, with
50% of the unveiling happening within 3—4h in the tumor.
pH titratable iron oxide nanoparticles produced by Crayton
et al. are able to accumulate in acidic tumor microenvi-
ronments by changing from neutral to positively charged
[60]. Romberg et al. review the different mechanisms that
can be used to shed nanoparticle PEG coatings to improve
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drug release and cellular uptake while increasing circulation
time [61]. Lee et al. propose a remote optical switch for
the spatial and temporal control of nanoparticle functional-
ities [62]. Finally, work by Partlow et al. [63] suggests that
lipid raft transport with membrane targeted nanoparticles
could enable targeted delivery of lipophilic substances with-
out the need for entire nanoparticle internalization, thereby
improving the ability of nanoparticles to penetrate deep in
tissue. Overall, these advances in nanoparticle engineering
are strong indications that the design guidelines identified
here can be translated to working systems in reality.

Conclusions

Nanoparticles targeted to cancer cells are designed to
specifically deliver treatment cargos. While they are able to
passively accumulate in tumor tissue through the enhanced
permeability and retention effect [4], targeted nanopar-
ticles often internalize in the first cells they encounter
after extravasation. Indeed, the diffusive nature of certain
tumor environments and the strong binding affinity of many
nanoparticles in the literature result in the development
of binding-site barriers. Overcoming these barriers would
require large doses of nanoparticles that could lead to sys-
temic toxicity [41]. Instead, we propose novel generalizable
guidelines that enable a non-toxic dose of nanoparticles to
achieve full tissue penetration and accumulate at effective
levels in all target cells. The strategy is to delay binding
until after nanoparticles have had time to diffuse deep into
the tissue. By applying optimization techniques to simu-
lated models of nanoparticle distributions in tumor tissue,
we show that the time delay after which nanoparticle bind-
ing should be initiated is generalizable to a large variety
of nanoparticle formulations and tumor scenarios. Recent
advances in nanoparticle shielding technology provide evi-
dence that such a strategy could be implemented in reality.
In the future, we aim to further control the spatial distribu-
tion of nanoparticles in tissue based on local signals in the
environment,
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