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Engineering tissues for in vitro applications
Salman R Khetani1 and Sangeeta N Bhatia1,2
Engineered tissues can be employed for studies on the

fundamental mechanisms of embryology and adult physiology

and for investigating the evolution of disease processes. They

also provide platforms to evaluate the behavior of new

chemical entities in drug development. The recent

development of three specific technologies has greatly

facilitated the engineering of tissues for in vitro applications: the

microfabrication tools that serve to both define the cellular

microenvironment and enable parallelization of cell-based

assays; synthetic, tunable hydrogels to create three-

dimensional microenvironments; and bioreactors to control

nutrient transport and fluid shear stress. Furthermore,

convergence of these tools is providing investigators with the

opportunity to construct and study tissues in vitro with

unprecedented levels of sophistication.
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Introduction
Engineering of tissues for therapeutic applications is one

of the potential paths to replacing damaged tissues in

‘regenerative medicine’; however, it has been recently

recognized that engineering of tissues for in vitro applica-

tions also holds tremendous potential value. In vivo, the

responses of individual cells are regulated by spatiotem-

poral cues that reside in the local microenvironment such

as the extracellular matrix (ECM), neighboring cells,

soluble factors and physical forces, all presented in a

three-dimensional context. Upon isolation from their in
vivo milieu, a multitude of cell types display phenotypic

instability [1,2]; therefore, successful recapitulation of

high-fidelity tissue models in vitro will require an under-

standing of just how cells respond to such microenviron-

mental stimuli towards defining structure/function
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relationships for tissues. A variety of novel tools have

been developed recently that will aid in this effort includ-

ing microfabrication-based tools to specify cell–substrate

interactions [3,4�], tunable synthetic hydrogels for the

creation of three-dimensional tissues [5��], and controlled

bioreactors for subjecting tissues to flow [6]. Here, we will

provide selected examples of recent efforts to use such

tools for engineering highly functional tissues. We will

also discuss arenas in which these tissues are finding

utility.

Microfabricated two-dimensional tissues:
controlled cellular microenvironments and
cellular microarrays
Conventional monolayer cultures are generated by ran-

domly seeding cells onto homogenous substrates.

Through the use of selective surface modification, micro-

fabrication tools are now used to fabricate heterogeneous

surfaces that offer control over cell–ECM and cell–cell

interactions with micrometer precision [3]. A variety of

such ‘micropatterning’ techniques have been developed

and reviewed elsewhere [7,8]. Briefly, photolithography is

utilized to pattern photoresist (light-sensitive polymer)

onto a silicon or glass wafer. The wafer can be processed

further to create cellular micropatterns or polydimethyl-

siloxane (PDMS), a biocompatible silicone rubber, can be

cast on the wafer to yield a stamp (termed soft lithography

[9]). PDMS stamps can be used for the microfluidic

delivery of biological agents (i.e. proteins, cells) or used

in microcontact printing of organic molecules (i.e. ECM

proteins) onto substrates.

The use of microfabrication tools to investigate biological

phenomena in different model systems has been an active

area of research [7,10]. Pioneering work by Chen et al.
[11,12��] demonstrated that the extent of spreading across

a rigid substrate provided a physical cue not only for

regulating cell fates, such as proliferation versus apoptosis

in endothelial cells, but for the differentiation of adult

stem cells as well (Figure 1a). Such ability to direct cell

fate and function through the surface patterning of bio-

materials has broad implications for the construction of

engineered tissues.

In addition to the ability to probe the behavior of adher-

ent single cells, micropatterning has proven to be an

enabling tool in specifying the interaction between neigh-

boring cells –– both homotypic (same cell type) and

heterotypic (between different cell types). For example,

homotypic interactions between two neighboring cells

were precisely investigated using microfabricated

‘bowtie’ wells that decouple cell–cell contact from cell
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Figure 1

Microfabrication tools to direct stem cell fate. (a) The degree of cell

spreading of human mesenchymal stem cells controls their

differentiation down the adipogenic (fat) or osteogenic (bone) lineage. In

particular, cells rounded up on small adhesive islands showed

accumulation of lipids (fat cells), whereas cells well-spread on large

islands contained active alkaline phosphatase (ALP; marker of

osteoblasts). Scale bars represent 50 mm. (Figure adapted from [12] with

permission.) (b) Extracellular matrix (ECM) microarray used to

investigate the differentiation of embryonic stem (ES) cells toward an

early hepatic fate (as indicated by expression of a b-galactosidase (b-

gal) reporter fused to the fetal liver-specific gene, Ankrd17). Top panel:

cells cultured with leukemia inhibitory factor (LIF) showed three-

dimensional features (inset is x–z confocal section, �77 mm thickness)

reminiscent of embryoid bodies. When cultured with retinoic acid (RA),

the cells grew as a relatively thin sheet (�25 mm thick, images not

shown). Scale bar represents 250 mm (50 mm for inset). Middle and lower

panels: Micrographs showing varying levels of b-gal reporter activity in

ES cells cultured on different ECM combinations. The presence of

collagen I, collagen III, laminin and fibronectin (C1 + C3 + L + Fn)

collectively induced noticeably more b-gal reporter expression in ES

cells than the mixture of collagen III and laminin. Scale bars represent

250 mm (50 mm for magnified views). Bar graph: Hierarchical depiction of

‘blue’ image area for each of the ECM mixtures. Error bars represent

SEM (n = 32). (Figure adapted from [23] with permission).
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spreading [13]. Similarly, the role of mechanical tension

was explored in micropatterned, multicellular sheets of

cells using microfabricated arrays of ‘posts’ as sensors

[14��]. Microfabrication tools have also been utilized to

evaluate the relative roles of homotypic and heterotypic

interactions, thought to be important in the liver, between

hepatocytes and non-parenchymal cells [15,16].

The cohort of tools described above primarily explores

‘static’ interactions through specification of cell adhesion;

however, in vivo, cells are exposed to stimuli that change

with time. The ability to dynamically modify cell-surface

and cell–cell interactions during culture has been a recent

area of investigation. For example, a thermally responsive

material poly(N-isopropyl acrylamide) (pNIPA), which

switches from cell adhesive (hydrophobic) at 37 8C to

cell repulsive (hydrophilic) at 20 8C, has been exploited

to harvest spheroids by releasing patterned multicellular

islands [17]. This strategy has been enhanced further by

fabricating a microheater array underneath a pNIPA layer

to locally regulate cell adhesion [18]. In addition to

thermal actuation of surface interaction, mild electrical

stimuli have been utilized to alter surface wetting proper-

ties [19]. In another instance, Jiang et al. [20] used

electrochemical desorption of a patterned self-assembled

monolayer (SAM) to initiate adsorption of serum proteins

and subsequent cell migration. Recently, Yeo et al. [21]

have achieved dynamic, molecular-level control of a sur-

face by modifying SAMs to present electrically active

esters that can both release and bind ligands (i.e. cell

adhesion peptides) upon electrochemical treatment. To

allow for even more versatility in experimental design,

our group recently developed a mechanically actuated

dynamic substrate that is particularly useful for investi-

gating interactions between two cell populations over

time (E Hui and SN Bhatia, unpublished).

The utility of microfabrication in tissue engineering

extends far beyond the ability to perturb the cellular

microenvironment. Another major strength of this reper-

toire of tools is the ability to miniaturize and parallelize

cell-based assays. Just as cDNA microarrays revolutio-

nized genomics, cell microarrays formed by robotic spot-

ting offer the potential for large-scale, systematic

screening of cellular phenotypes [22]. Cells are either

printed directly onto a planar surface or seeded onto

spotted biomolecules (i.e. ECM proteins [23�], polymers

[24�] or short interfering RNA [25]). For biomolecule

microarrays, a non-adhesive background surface (i.e. poly-

acrylamide) can be utilized to prevent cell migration from

spotted regions and thereby maintain pattern fidelity. For

instance, Anderson et al. [24�] generated an array of

synthetic polymers by depositing a variety of commer-

cially available acrylate monomers that were subse-

quently photopolymerized onto a polyhydroxyethyl

methacrylate-coated glass slide. The substrates were

seeded with human embryonic stem cells and analyzed
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for differentiation markers utilizing immunofluorescence

across 1700 cell–material interactions. Rather than inves-

tigate novel materials, Flaim et al. [23�] probed the

interaction of cells with native ECM molecules in com-

binatorial mixtures. The role of integrin crosstalk was

probed in the phenotypic stability of primary hepatocytes

together with differentiation of embryonic stem cells

towards an early hepatic fate [23�] (Figure 1b). Recently,

Soen et al. [26�] have extended the ECM array to include

mixtures of immobilized morphogens and other signaling

proteins such as Notch ligands and Wnt factors. The

continued development and use of such multisignal

microarrays is likely to provide important clues as to

the microenvironmental regulation of cell-fate processes.

Despite the utility of microfabricated ‘two-dimensional’

model systems, many cell types require a three-dimen-

sional microenvironment to accurately reflect their in vivo
counterparts (e.g. tumor cells, chondrocytes) [27]. There-

fore, in the next section, we discuss strategies for engineer-

ing customizable three-dimensional microenvironments

for tissue constructs.

Synthetic three-dimensional
microenvironments
Considerable research has focused on mimicking the

biochemical composition, fibrillar structure and viscoe-

lastic gel characteristics of the natural tissue matrix

[28,29��]. Both naturally derived and synthetic biomater-

ials have been extensively explored as three-dimensional

scaffolds [5��]. Of the many synthetic biomaterials being

explored, hydrogels in particular have been widely

adopted for three-dimensional cell culture because their

high water content and mechanical properties resemble

those of native tissues [28,30�,31,32]. Furthermore, many

hydrogels can be polymerized in the presence of cells,

thereby ensuring a uniform cellular distribution through-

out the three-dimensional network. For example, photo-

polymerizable poly(ethylene glycol) (PEG)-based

hydrogels are of great interest for tissue engineering

owing to their biocompatibility, hydrophilicity, and their

ability to be customized by varying chain length (to

control microporosity and thus mechanical properties)

or by chemically adding biological molecules [29��].
PEG-based hydrogels have been used for the encapsula-

tion of a diverse array of cell types such as chondrocytes

[33], vascular smooth muscle cells [34], osteoblasts [35]

and mesenchymal stem cells [36].

Pioneered by Hubbell and coworkers, PEG-based hydro-

gels can be chemically customized using different types

of biologically functional building blocks to enable bidir-

ectional signaling with cells [5��]. Recently, Pratt et al.
[29��] demonstrated the design of a PEG scaffold that can

modulate cell behavior through bound adhesion ligands

and growth factors, and can be remodelled using cell-

associated proteases. In another study, Raeber et al. [37�]
www.sciencedirect.com
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used protease-sensitive, cell-adhesive PEG hydrogels

with defined microporosity to parse the roles of individual

chemical and mechanical factors that contribute to the

three-dimensional migration of dermal fibroblasts.

In addition to the homogenous incorporation of proteins

into hydrogels, concentration gradients can also be created

to study effects on cellular fates such as migration. For

instance, DeLong et al. [38] used a gradient marker with

photopolymerization to create a simple, linear basic fibro-

blast growth factor (bFGF) concentration gradient in PEG

hydrogels. Both smooth muscle cell proliferation and

migration were increased substantially when bFGF was

present in the gels. As has been demonstrated in other

arenas, microfabrication techniques can again extend the

capabilities of this approach by enabling the generation of

more complex microfluidic gradients [39�].

Early experience with PEG hydrogels was limited to

relatively robust cell systems such as fibroblasts [40],

immortalized cell lines [41] and chondrocytes [33]; how-

ever, recent experience has extended the utility of the

PEG platform to notoriously finicky cell types such as

hepatocytes. For example, we have observed that this

platform can be tuned to accommodate the survival of

hepatocytes through alterations in pore size, photoinitia-

tor composition, inclusion of adhesive ligands, and incor-

poration of stromal cells (VL Tsang, AA Chen, LM Cho

et al., unpublished). In addition to enabling the three-

dimensional culture of cells from a growing list of normal

cell types, PEG-based hydrogels have also found utility in

the encapsulation of cells from diseased tissues towards

studying pathophysiological processes. For instance,

Wang et al. [42�] encapsulated osteoblasts from a mouse

model of Apert syndrome, a disease characterized by

malformations of the skull, limbs and viscera. The trans-

genic defect in FGF receptor resulted in alterations in

immunostaining for osteoblast markers after three weeks

in PEG hydrogel culture, which is consistent with altered

cartilage and bone development in vivo (Figure 2a).

In addition to the encapsulation of somatic cells, several

groups have explored the encapsulation of progenitor and

stem cells in PEG hydrogels [36,43]. As tissue formation,

homeostasis and regeneration are all dependent on the

differentiation of stem cells down specific lineages, three-

dimensional hydrogels that mimic natural three-dimen-

sional stem cell microenvironments could prove important

towards understanding and controlling stem cell differen-

tiation [44,5��]. For instance, Mahoney et al. [45] encap-

sulated neural precursor cells into PEG hydrogels

containing hydrolytically degradable lactide units. These

precursor cells proliferated and subsequently differen-

tiated into both functional neurons and glia. In another

set of studies, Williams et al. [44] showed that bone

marrow-derived mesenchymal stem cells (MSCs) encap-

sulated into a non-adhesive PEG hydrogel underwent
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Figure 2

PEG hydrogels for engineering three-dimensional cellular

microenvironments. (a) Skeleton of Fgfr2S252W/+ (fibroblast growth factor

receptor 2) mutant mouse (transgenic model of Apert syndrome) with

bone stained purple (Alizarin Red Stain) and cartilage stained blue

(Alcian Blue). Osteoblasts were first isolated from the middle shaft of

long bones (see arrow) of either wild-type mice or mice with a mutation

in the Fgfr2 receptor, and then encapsulated in PEG hydrogels and

cultured in osteogenic medium for three weeks to allow for

osteogenesis. As compared with wild-type controls, mutant cultures

displayed increased mineralization (von Kossa staining) — images

courtesy of Jennifer Elisseeff, Johns Hopkins University. (b)

Micropatterning of hydrogel structures at various length scales using

photo- and electropatterning techniques. Hydrogel microstructure with

electropatterned green-labeled cells surrounded by a field of randomly

distributed red-labeled cells. Green-labeled cells mixed with pre-

polymer solution were first patterned in clusters using dielectrophoresis

(electropatterning) and then encapsulated within larger hydrogel

structures using UV irradiation through a photomask (photopatterning).

Red-labeled cells mixed in pre-polymer solution were then introduced

into the chamber and the entire assembly was exposed to UV light to

create a rectangular hydrogel slab containing the different cells. (Figure

adapted from [4] with permission). Primary rat hepatocytes arranged in

cords and stained for intracellular glycogen, thereby showing versatility

of electropatterning in the cell type and micropattern geometry. (Figure

adapted from [52] with permission).
chondrogenesis more efficiently in the presence of exo-

genous transforming growth factor-b, an observation unli-

kely to be made in ‘two-dimensional’ culture.

Collective experience in therapeutic tissue engineering

has led to the recognition that the architecture of three-

dimensional scaffolds is crucial to the function of
Current Opinion in Biotechnology 2006, 17:1–8
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engineered tissues. Specifically, the shape of a tissue

can alter nutrient transport, interactions between cell

populations, and the distribution of mechanical force.

In recent years, rapid prototyping technologies have been

applied towards the fabrication of three-dimensional scaf-

folds with tunable micro- and macroscale features [46,47].

Here, too, the PEG hydrogel platform can be adapted to

incorporate this capability [48–50]. Patterned photomasks

can localize the ultraviolet exposure of the pre-polymer

solution and thereby dictate the structure of the resultant

hydrogel [41,51]. This photopatterning process can be

repeated using additional photomasks to generate multi-

layered constructs with different cell types. To specify

the interactions of cells within a three-dimensional hydro-

gel context, Albrecht et al. [52] recently developed a

method termed ‘electropatterning’ that utilizes mild elec-

tric field gradients to position cells within the material

before photoencapsulation. Using electropatterning, the

authors demonstrated that the microscale organization of

chondrocytes can regulate matrix biosynthesis. They

have further combined photopatterning with electropat-

terning to achieve hierarchical control over tissue struc-

ture in hydrogels over a length scale ranging from microns

to centimeters [4�] (Figure 2b).

Clearly, hydrogel platforms that are inert, modifiable and

photopolymerizable — such as those based on PEG —

offer a wide array of possibilities for forming tissues ex
vivo. Nonetheless, these three-dimensional tissues cul-

tured under static conditions still lack key physiological

stimuli that can be introduced through the incorporation

of bioreactor technology. In the next section, we discuss

strategies for culturing engineered tissues in bioreactors

with a focus on microfabricated bioreactors that enable

the production of miniaturized arrays of perfused tissues.

Bioreactors for in vitro applications
Bioreactors are devices in which the biological and/or

biochemical processes develop under closely monitored

and tightly controlled environmental and operating con-

ditions (i.e. pH, temperature, pressure, nutrient supply

and waste removal, and shear stress) [6]. A plethora of

different bioreactor designs have been described in the

literature for the culture of two-dimensional and three-

dimensional tissue constructs [53]. Here, our focus is

primarily on small-scale bioreactors that have been devel-

oped recently for in vitro applications.

In vivo, the fluidic microenvironment around cells within

a given tissue is often highly varied and therefore con-

trollable variations in the fluidic environment are an

important component of fabricating tissues ex vivo. Fluid

flow in bioreactors can be used to generate or mitigate

gradients of stimuli and thereby impact tissue function.

For example, standing gradients in oxygen tension exist

in virtually every tissue of the body. Simple gradients

have been generated by progressive depletion of a
www.sciencedirect.com
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substrate such as oxygen in a parallel-plate reactor result-

ing in compartmentalized tissue (liver) function that

exhibited several hallmarks of hepatic tissue in vivo
[54]. More complex patterns in the soluble environment

often exploit the lack of convective mixing in microfluidic

networks [55] to explore such diverse phenomena as

neutrophil chemotaxis [56] and intracellular mitochon-

drial trafficking [57]. In another design, two laminar

streams were separated by a compartment containing

shallow microgrooves, which allowed only the passage

of neural axons [58]. With this device, axons and cell

bodies of neurons could be subjected to distinct soluble

environments enabling the study of this elongated cell

type in more controlled ways.

In contrast to the examples above, bioreactors can also be

used to facilitate nutrient delivery. Indeed, limitations in

diffusive nutrient transport are especially problematic in

the fabrication of three-dimensional tissues. Convective

transport around and through an engineered tissue at the

proper flow rate can dissipate gradients of nutrients and

maintain tissue mass. In a novel strategy, Yu et al. [59]

mixed microspheres of different density to vary flow

velocity around and through scaffolds in rotating wall

bioreactors. Compared with static three-dimensional con-

trols, culturing rat primary calvarial cells under dynamic

flow conditions led to more uniform distribution of cells in

the scaffold interior, enhanced phenotypic protein
Figure 3

Microfabricated bioreactors for the culture of two-dimensional and three-dim

microcontainers for the culture of uniformly sized three-dimensional cellular

contain laser-drilled pores for fluid perfusion through the tissue. (a) Open bi

perfusion or superperfusion mode. The microcontainers are arranged in the

microcontainer (300 � 300 � 300 mm3). (c) Primary rat hepatocytes organize

adapted from [60�] with permission.) (d–f) Non-addressable array (8 � 8) of

hepatocytes and 3T3 fibroblasts. Two microfluidic networks are used to ind

(d) Photograph of device, (e) micrograph of fluorescently labeled hepatocyte

co-cultures. (Figure adapted from [66] with permission.)
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expression and improved mineralized matrix synthesis.

Bioreactors have also been utilized to facilitate perfusion

of immobilized three-dimensional cellular aggregates.

For example, a planar polymer scaffold with 900

microcontainers containing laser-drilled pores for fluid

perfusion has been reported for the culture of three-

dimensional hepatic aggregates (Figure 3a–c) [60�,61].

In another platform, an array of microchannels created

using deep reaction ion etching of silicon wafers is used to

culture hepatic aggregates that adhere to the channel

walls [62]. Given the high oxygen uptake rate of hepa-

tocytes, it is likely that perfusion in both these platforms

helps to limit necrosis in the core of the hepatic aggre-

gates. In an alternative approach, our group has subjected

three-dimensional hybrid hepatic tissues created by

photopatterning PEG-encapsulated hepatocytes to per-

fusion in a bioreactor to improve the viability and liver-

specific functions of hepatocytes (VL Tsang, AA Chen,

LM Cho et al., unpublished). On the other hand, McGui-

gan et al. [63�] have recently utilized several collagen gel

rods, which contain encapsulated cells and are surrounded

by endothelial cells, to assemble a micro-vascularized

tissue construct that can be perfused with culture med-

ium or whole blood.

In addition to allowing convective transport of nutrients,

bioreactors can also enable culture of tissues under con-

tinuous flow conditions for promoting reduced handling
ensional tissue constructs. (a–c) Planar polymer scaffold with 900

aggregates. The bottom faces of the microcontainers are modified to

oreactor housing with inserted microstructure for application in

middle 1 cm2 surface. (b) Scanning electron micrograph of a single

d in three-dimensional cuboids inside microcontainers. (Figure

microfluidic wells for creating micropatterned co-cultures of primary

ependently perfuse the co-cultures with culture medium and oxygen.

clusters, and (f) phase-contrast micrograph of micropatterned
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and increased automation. A notable advance in the field

is the use of refreshable Braille displays to power inte-

grated pumps and valves through local deformations of

channel networks within elastomeric devices (i.e. PDMS-

based) [64]. The use of such Braille displays has spurred

the development of handheld microfluidic devices that

can circulate medium continuously for weeks through

cultures [65��]. In another example, Kane et al. [66]

developed an 8 � 8 element non-addressable array of

microfluidic wells capable of supporting micropatterned

hepatocyte-fibroblast co-cultures. Two microfluidic net-

works independently perfuse the co-cultures with culture

medium and oxygen. Results indicated that these co-

cultures remained functional (albumin and urea secre-

tion) for 32 days (Figure 3d–f).

Although much work has been done to develop culture

models of single tissues, integration of multiple tissue

models towards development of the so called ‘human-on-

a-chip’ is a relatively new concept [67]. In vivo, interac-

tions between multiple organ systems are important for

the maintenance of homeostasis, and such interactions

can also mediate the toxicity of pharmaceuticals.

Recently, Viravaidya et al. [68�] have developed a multi-

chamber microbioreactor to study bioaccumulation, dis-

tribution and toxicity in different tissue compartments

connected via circulating fluid. The tissue compartments

in this device are currently modeled by simple immorta-

lized cell lines, but clearly the ability to study the inter-

action of high-fidelity tissue models in a microfluidic

network would be quite powerful.

Overall, a variety of large-scale bioreactors have been

developed for fabricating two-dimensional and three-

dimensional tissues for clinical applications. Although

microfluidics has spurred the development of miniatur-

ized two-dimensional cultures for in vitro use, develop-

ment of small-scale three-dimensional bioreactors is a

relatively new direction in tissue engineering. We antici-

pate that in the future, two-dimensional and three-dimen-

sional models of human and animal tissues with

controlled soluble factor microenvironments will play

an important role in drug screening as well as in evaluat-

ing mechanisms underlying biomedical phenomena.

Conclusions
The ex vivo engineering of high-fidelity tissues is being

facilitated by three specific technologies: microfabrication

tools to precisely control cellular microenvironments

and create miniaturized cell-based assays for screening

applications; synthetic tunable hydrogels to create

three-dimensional scaffolds that interact with cells in a

bidirectional manner; and bioreactors to culture tissues

under flow conditions towards controlling nutrient trans-

port, enabling continuous culture and subjecting cells to

mechanical forces (i.e. shear stress). In the future, we

anticipate that highly functional tissue units might be
Current Opinion in Biotechnology 2006, 17:1–8
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used in a modular manner to build complex tissues with

multiple cell types and hierarchical structural features.

These tissues will require an integrated vascular supply

to achieve proper functional mass for clinical applications.

For in vitro applications, such as screening in drug devel-

opment, the integration of multiple tissues into a ‘human-

on-a-chip’ platform could serve to better define the effects

of endogenous and exogenous compounds on patients.
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