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Biologists increasingly use co-culture systems in which two or more cell types are grown in cell culture
together in order to better model cells’ native microenvironments. Co-cultures are often required for cell
survival or proliferation, or to maintain physiological functioning in vitro. Having two cell types co-exist
in culture, however, poses several challenges, including difficulties distinguishing the two populations
during analysis using automated image analysis algorithms. We previously analyzed co-cultured primary
human hepatocytes and mouse fibroblasts in a high-throughput image-based chemical screen, using a
combination of segmentation, measurement, and subsequent machine learning to score each cell as hep-
atocyte or fibroblast. While this approach was successful in counting hepatocytes for primary screening,
segmentation of the fibroblast nuclei was less accurate. Here, we present an improved approach that
more accurately identifies both cell types. Pixel-based machine learning (using the software ilastik) is
used to seed segmentation of each cell type individually (using the software CellProfiler). This stream-
lined and accurate workflow can be carried out using freely available and open source software.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Biologists increasingly use whole organisms and co-culture sys-
tems in an effort to create more physiological experimental sys-
tems. The mechanisms by which cells respond to their local
microenvironment and determine appropriate cellular functions
are complex and poorly understood. In many cases, co-culture sys-
tems are required for a particular cell type to proliferate or to
maintain viability and physiological functioning in vitro. These
increasingly complex model systems also more faithfully represent
the native cellular microenvironment. Co-culture systems provide
a valuable model for dissecting the mechanisms of cell signaling,
whether by diffusible small molecules and exosomes, or by contact
through cell–cell interactions and extracellular matrix deposition.
Co-culture systems are also being used to study cellular biome-
chanics in cell migration [1], hepatocyte functions (transporters,
metabolism, regeneration, infection, toxicity, extracellular matrix,
and tissue structure/function relationships, development, and size
control) [2], embryogenesis (growth, development, autocrine and
paracrine regulation) [3], cartilage (physiology, homeostasis, repair
and regeneration) [4], cancer (growth, invasion, metastasis, and
differentiation) [5], and stem cells (differentiation and develop-
ment) [6], among others.

Automated image analysis is desperately needed for co-culture
systems. Microscopy is a powerful means to separate the cells into
virtual mono-cultures for analysis purposes and can be quantita-
tive if suitable algorithms exist. Identifying cells of one particular
cell type is typically feasible using existing algorithms; however,
these analyses can falter when faced with a dense mixture of
two cell types of distinct morphology. Properly identifying mix-
tures of two object types is a challenging computational problem:
most algorithms depend on building a model of a single object
type. As yet, no model-based segmentation (object delineation)
algorithms have been demonstrated to be generally useful for co-
culture systems lacking specific labels. Until now, each cell type
must typically be segmented separately in co-culture experiments,
requiring laborious individual algorithmic parameter settings or an
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object-based classification step that can distinguish each object
type (using e.g. size, texture, or intensity). It would be preferable
to simplify the steps of distinguishing and segmenting the cells.
Solutions are needed to render the new co-culture systems tract-
able to automated image analysis, a tool that has become indis-
pensable throughout biology.

We previously developed a high-throughput, image-based
screening platform for primary human hepatocytes co-cultured
with fibroblasts, together with an informatics workflow to process
the resulting images [7]. We used it to identify small molecules
that induced functional proliferation of primary human hepato-
cytes, with an ultimate goal of generating renewable and func-
tional cell sources for liver research and the treatment of liver
diseases. As such, the informatics workflow was optimized for
counting hepatocytes; its accuracy for identifying and counting
fibroblasts was not ideal. This drawback consequently prevented
in-depth analyses of any statistical correlations that required accu-
rate fibroblast cell identification in addition to hepatocyte counts.

Here, we present a novel informatics workflow that is simplified
and capable of accurate counting of multiple fluorescent mor-
phologies. It overcomes many of the limitations of the prior work-
flow, which relied on segmentation (relatively accurate for
hepatocytes, but with fibroblasts often over-segmented) followed
by machine learning to classify hepatocytes versus fibroblasts (or
portions thereof). Here, we accurately segment and count both cell
types by using pixel-based machine learning [8,9] followed by
model-based segmentation (tuned to hepatocyte and fibroblast
morphology separately) and counting. We demonstrate that this
workflow is more user-friendly, and provides improved accuracy.
2. Materials and methods

2.1. Cell culture

Details of the cell culture methods have been previously pub-
lished [7]. Briefly, J2-3T3 fibroblasts were plated on collagen-
coated 384-well plates at a density of 8000 cells per well. After
48 h, primary human hepatocytes were plated onto the fibroblasts
at densities ranging from 4000 to 9500 cells per well; as a result,
fibroblasts generally outnumber hepatocytes in the final images.
Cells were fixed and stained with Hoechst 33342 to visualize the
nuclei.

2.2. Microscopy and image acquisition

Details of the microscopy and image acquisition methods have
been previously published [7]. Here, one 384-well plate was popu-
lated with alternating wells empty, resulting in 96 wells of sam-
ples. Nine sites per well were robotically imaged (Molecular
Devices, Inc.) at 20� objective magnification, which was sufficient
to visualize differences between the cell types. Note that the sites
imaged did not span the entire well, so the cell counts do not sum
to the numbers of cells seeded (plus their daughter cells). For the
analysis presented here, two columns of wells from the plate were
analyzed: a low hepatocyte count column (4000 hepatocytes
seeded per well) of 8 wells, and a high hepatocyte count column
(9500 hepatocytes seeded per well) of 8 wells, totaling 144 images.

2.3. Image analysis

All CellProfiler pipelines and detailed settings to reproduce the
image analysis procedures are available here: http://www.cellpro-
filer.org/published_pipelines.shtml. The image processing for the
two workflows presented involves three open-source software
packages (detailed in the ‘‘Computational resources” section
below): CellProfiler ([10], http://cellprofiler.org), CellProfiler Ana-
lyst ([11], http://cellprofiler.org), and ilastik ([9], http://ilastik.
org). Subsequent sections provide a narrative overview of the pro-
cessing steps.

2.3.1. Illumination correction
To account for systematic bias due to non-homogeneous illumi-

nation across the image field, all images were illumination-
corrected [12]. A dedicated CellProfiler pipeline loaded all the
images from the plate and averaged them. This average image
was then smoothed using a median filter (width: 300 pixels) and
saved. The smoothed image, called the illumination function, is
subsequently loaded into the main CellProfiler pipelines (described
below, Sections 2.3.2 and 2.3.3), and each raw image is then
divided by the illumination function to achieve a set of
illumination-corrected images. These images were saved, and used
as inputs for both the previous and new workflows.

2.3.2. Previous workflow
Details of the previous workflow have been previously pub-

lished [7]. Briefly, illumination corrected images (Section 2.3.1)
were loaded into CellProfiler using the LoadData module. All nuclei
were segmented using three-class Otsu thresholding, with
intensity-based declumping. Multiple measurements were made
on the resulting segmented objects in order to facilitate the
object-based machine learning: texture at scales of 1 and 3 pixels,
adjacency metrics up to 25 pixels from each nucleus object,
intensity-based statistics within each object, morphology/shape
based features, and the radial distribution of intensity within each
object.

Further, because punctate nuclear spots are a prominent feature
of murine fibroblasts, these features were analyzed separately. The
puncta were enhanced with a tophat filter with a 9 pixel width.
Puncta were segmented with CellProfiler’s RobustBackground
thresholding method, and declumped using local intensity peaks’
maxima. Intensities and shape features were measured for each
spot, and they were counted relative to their parent nucleus.

CellProfiler Analyst’s Classifier tool [11] was used to load the
database tables created and populated with all the measurements
made with CellProfiler. Using 60 ‘‘rules”, i.e., regression stumps,
from a GentleBoosting algorithm, objects were classified as hepato-
cyte, fibroblast, or debris. Approximately 329 nuclei (randomly
selected from 238 images) were used for training in CellProfiler
Analyst. Care was taken to exclude the test set of images/wells
(used for later analysis) from the training set. All objects were then
scored and counted on a per-well basis.

2.3.3. New workflow
Approximately 60 nuclei plus 4 regions deemed debris (from 4

images) were used for training in ilastik. Hepatocyte and fibroblast
nuclei were manually labeled separately with the paintbrush tool,
as well as debris and background pixel classes. Training was itera-
tive, adding new pixel classification until the probability maps
were stable and adequately distinguished the object types. The
ilastik classifier was exported as an HDF5 file.

A CellProfiler pipeline loaded the illumination corrected images,
then imported the ilastik classifier file as an HDF5 file and applied
it to each image. The hepatocyte and fibroblast probability maps
were smoothed with a Gaussian filter of width 7 pixels (debris
and background classes were not analyzed further). Hepatocyte
and fibroblast objects were segmented by simply thresholding
the probability maps with a manual threshold of 0.5 (i.e. >50%
probability), and declumping based on shape using the distance
transform of the objects. All objects were then counted on a per-
well basis.

http://www.cellprofiler.org/published_pipelines.shtml
http://www.cellprofiler.org/published_pipelines.shtml
http://cellprofiler.org
http://cellprofiler.org
http://ilastik.org
http://ilastik.org


* 
* 

* * 

* 
* 

* 
* 

* 
Hepatocyte     Fibroblast * *  

Fig. 1. Example image with cell types labeled. A representative image is shown
(left). Zooming in (right), example hepatocytes and fibroblasts are marked for
reference. Scale bar is 20 microns.
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2.4. Ground truth comparison

A small set of random images not in either training set were
manually labeled with 3 colors, marking fibroblasts, hepatocytes,
and other objects (mostly debris or bright dying cells). This set
included 1414 total objects (981 fib, 408 hep, 25 debris/other) in
five images. These manually-labeled images were loaded into our
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Fig. 2. A comparison of workflows for distinguishing two cell types in co-culture. (A) O
measure their features in CellProfiler (top), and manually-trained object-based machine
manually training a pixel-based classifier, using ilastik [9] (top) followed by an image ana
each cell type individually (middle), then segments, counts, and (optionally) measures
workflows used a pre-processing pipeline for illumination correction in CellProfiler (not
old and new CellProfiler pipelines and compared against the old
and new methods’ object classifications. The ground truth pipeli-
nes are available with the other pipelines (see Section 2.5).

2.5. Computational resources

Both image processing workflows were tested on a desktop
Windows 7 workstation (16 GB RAM) and CellProfiler pipelines
were submitted for processing on a Linux cluster.

Software versions used were CellProfiler version 2.1.2
v2015_08_05, CellProfiler Analyst 2.0 v2014_04_01, and ilastik
version 0.5.12; links to Windows binary versions of these are pro-
vided here: http://www.cellprofiler.org/published_pipelines.shtml.
Note that newer versions of ilastik exist but are not currently sup-
ported by CellProfiler. Note also that the training step in the new
workflow can be carried out using ilastik on Mac OS X, but CellPro-
filer’s ClassifyPixels currently is supported on Windows only.

3. Results and discussion

We developed a novel, streamlined informatics workflow to
process co-culture images of hepatocytes and fibroblasts (Fig. 1)
based on pixel-based machine learning followed by segmentation
(Fig. 2B). This workflow begins with the researcher marking a
few regions as belonging to the classes ‘‘hepatocyte”, ‘‘fibroblast”,
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ur previous workflow [7] required an analysis pipeline to segment all nuclei and
learning, using CellProfiler Analyst [11] (bottom). (B) Our new workflow involves
lysis pipeline in CellProfiler that applies the classifier to create probability maps for
features for each cell of each type (bottom). For the purposes of comparison, both
shown). Scale bars are 20 microns.
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Fig. 3. Improved delineation of individual nuclei using pixel-based machine
learning. (A) A representative raw image of a hepatocyte-fibroblast co-culture,
stained with Hoechst 33342 to visualize the nuclei. (Note: intensity is log-
normalized here to enhance contrast for visualization only). (B) Using the raw
image for segmentation yields many nuclei improperly fused together or otherwise
badly delineated. Note that in the full previous workflow, individual ‘‘objects” here
would later be classified as hepatocyte or fibroblast using object-based machine
learning. (C and D) Using probability maps from pixel-based machine learning
(shown in Fig. 2B) for segmentation of each cell type individually yields improved
delineation of adjacent nuclei, especially in cases where a hepatocyte is immedi-
ately adjacent to a fibroblast. Scale bar is 20 microns.
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and ‘‘background” within a small set of fluorescent images taken
from the entire experiment (Fig. 2B, top). This labeling is done with
a paintbrush-style tool in the open-source software tool ilastik [9],
which is very simple to use and requires �2 h for a typical co-
culture data set. Pixel classifiers, as in ilastik, aim to learn to distin-
guish whether each pixel belongs to a specific object type or back-
ground, using not just the intensity information of that pixel but
also intensity information from local pixel neighborhoods [8].

One advantage of using ilastik for pixel-based machine learning
is that the researcher need not understand the details of the
machine learning process; the researcher simply marks regions
with the paintbrush iteratively until the results appear sufficiently
accurate. Behind the scenes, the labeled pixels form the training set
for a pixel-based random-forest classifier. The classifier takes
intensity, texture, edge, and orientation categories of features at
multiple scales (3–61 pixels) as input. Here, we chose all features
and scales, as this broad selection was not prohibitive computa-
tionally (e.g. less than 60 s to train on 3 images) but the number
of features could reasonably be reduced depending on the image
assay characteristics. This classifier is refined iteratively until the
researcher is qualitatively satisfied that the output probability
maps show adequate assignment of the pixels to each of the classes
of cell type across a small subset of test images. ilastik also reports
the ‘out-of-bag (oob) error’ which is an unbiased estimate of the
test set error for random forests (mean oob = 0.01 for 3 individual
images trained and tested).

The resulting pixel-based classifier is then exported and loaded
into the open-source software CellProfiler [10,13] via the Clas-
sifyPixels module. This new module is designed to accept ilastik
classifiers as input and apply them to all images in the experiment.
This process produces separate probability maps for hepatocytes
and for fibroblasts, where the relative brightness of a pixel indi-
cates the likelihood of that pixel belonging to the cell type of inter-
est (Fig. 2B, middle). In the context of a CellProfiler pipeline, the
ClassifyPixels module thereby serves to pre-process the input
image for downstream segmentation, counting, and measurement
of cells. The resulting probability map images of each cell type are
then smoothed with a small Gaussian filter (7 pixels wide) to pre-
vent over-segmentation, justified by inspection that nuclei are gen-
erally at least 7 pixels wide and convex. The objects are segmented
and counted using these smoothed probability maps in the remain-
der of the pipeline (Fig. 2B, bottom), which can optionally include
measurement of morphological features of both types of nuclei.

The previous workflow (Fig. 2A) also used machine learning, but
did so at the object level, after segmentation (Fig. 2A, bottom),
rather than at the pixel level, prior to segmentation (Fig. 2B, top).
This restructuring led to a number of improvements, detailed
below.

The training step involving user interaction is less time-
consuming in the new method. In the previous workflow, we
needed to train 300+ nuclei, to ensure that we sampled across
many images in the experiment while avoiding the test set, in
order to adequately train the classifier. While both workflows thus
involve manually training a classifier, we find that the hands-on
time required to properly train the pixel-based classifier in the
new workflow is much less than for training object-based classi-
fiers in the previous workflow. The previous workflow took 4 iter-
ations of approximately 45 min each to train 300+ nuclei (�3 h
total). The new workflow showed improved accuracy (see below)
with only 64+ nuclei/debris and background regions needing to
be labeled, and in less time (�2 h total).

In addition, less computing time is required in the new work-
flow: the previous workflow relied on measuring hundreds of
features of each cell for the object-based classification step, which
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Fig. 4. Improved accuracy of counting each cell type using pixel-based machine learning. Boxplots comparing average hepatocyte counts per field of view for the low and high
density hepatocyte conditions where 4000 and 9500 cells were initially seeded per well, respectively. (A) The previous workflow displays a clear separation between the two
distributions, but with a higher standard deviation (Z0-factor = �1.10, p-value = 3.3 � 10�4). (B) The new workflow shows similar average hepatocyte counts but with less
variability (Z0-factor = 0.16, p-value = 3.3 � 10�6). Higher Z0-factor is better, though it should be noted that the sample sizes are suggested to be larger than those here because
the statistic is sensitive to small fluctuations in data variability [19], and so if this were a true screen we would have included more control wells to push the Z0 higher toward
a more traditional ‘screenable’ value of 0.5.
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is computationally much more time-consuming than measuring
local features for pixel-based machine learning. Measuring object
features is optional in the new workflow and can be limited to just
those morphological features of interest for the goals of the exper-
iment, so the analysis pipeline can process images much faster
than the previous workflow. Further, if simple cell counts are the
desired output, the CellProfiler pipeline is quite abbreviated and
few if any measurement modules are needed, reducing time spent
in image assay development and computation time.

Moreover, because the segmentation in the previous workflow
was not as accurate as the new workflow (see below), the
researcher was often uncertain how to classify objects that erro-
neously included pixels from both cell types. In the old workflow,
an initial step was used to segment both cell types simultaneously,
which was difficult because of differing sizes and intensities of the
nuclei classes. Accurately declumping in a single step was also
problematic. With the new workflow, the researcher only needs
to choose a few images and intuitively brush over nuclei to train
the classifier. A coarse annotation is typically sufficient, but can
be as precise as necessary to define the difficult segmentation
cases, e.g. actively training adjacent nuclei results in better
segmentation.

We found that the new workflow offers improved accuracy in
terms of both cell counts and segmentation (Fig. 3). Subjectively,
we noted improved accuracy of the identification of the borders
of fibroblast nuclei, especially for cases in which a fibroblast is
immediately adjacent to a hepatocyte. In addition, bright ‘‘debris”,
which here includes bright apoptotic or mitotic nuclei, previously
caused problems with the automated segmentation algorithms,
even with attempts at masking bright pixels. However with ilastik,
after training a ‘‘debris” class, the corresponding debris pixels have
a low probability value with respect to the hepatocyte and fibrob-
last pixels; this streamlines the overall image analysis by eliminat-
ing the need for additional parameter tuning, and thresholding and
masking steps.

We quantitatively assessed cell counts in the low-density and
high-density hepatocyte wells (Fig. 4). Median values across the
8 wells for each cell density show expected ratios and counts for
both workflows. Note that the entire well was not imaged, so the
cell counts calculated here do not sum to the numbers of cells
seeded (plus their daughter cells). The variance is smaller in the
new workflow, and this is reflected in an improved Z0-factor [14],
commonly used for assessing assay quality (previous method Z0-
factor = �1.10, new method Z0-factor = 0.16. Fibroblasts, which
were seeded at constant density throughout the plate, were also
counted and found to show no significant differences between
the low and high density hepatocyte conditions in either old or
new workflows (Supplementary Fig. S1). We further assessed other
nuclear features including nuclear area and DNA content (Supple-
mentary Figs. S2 and S3). While there are differences in the area
and DNA content between the old and new methods, we note that
both features are quite sensitive to user-adjustable thresholding
parameters. The associated parameters were not adjusted to
specifically produce the same size nuclear objects; in other words,
if desired this difference in size could likely be eliminated through
adjustment of parameters.

To assess the accuracy of the cell type classification, classified
objects from the old and new methods were compared against a
set of 1414 manually annotated ground truth objects (Supplemen-
tary Figs. S4 and S5). For hepatocytes, the precision increased from
0.84 to 0.94 and the recall increased from 0.64 to 0.70 (old to new).
For fibroblasts, the precision increased from 0.85 to 0.86, and the
recall increased from 0.94 to 0.98 (old to new). To gain insight into
any mislabeling biases, we tallied a truth table (Supplementary
Fig. S5). The old and new methods overall show similar patterns
of true and false predictions. Most fibroblasts are labeled correctly,
however true hepatocytes show a higher rate of mislabeling as pre-
dicted fibroblasts. This is borne out by our experience: hepato-
cytes’ untextured nuclei are often difficult to distinguish from
dim or out-of-focus fibroblast nuclei.

We suspect further improvements are compatible with the new
workflow, in particular, eliminating the illumination correction
step. For the purposes of consistency in this study, all images were
first corrected for illumination artifacts using a separate CellPro-
filer pipeline as described in Materials and Methods (Section 2.3.1).
In our experience, ilastik’s local, pixel-based analysis appears to be
inherently robust to illumination variation across an image. This
flexibility can likely be attributed to ilastik’s feature sets, which
are based on local intensity variation and not dependent upon
absolute intensities. Therefore, we anticipate the new workflow
could be further simplified and accelerated by eliminating the sep-
arate illumination correction pipeline, at least for cases where sub-
sequent measurement of intensity-based features is not part of the
experimental goals.

The new approach is likely amenable to any co-culture system
in which some measurable morphological or intensity differences
exist between the cell types; in our experience, most visual distinc-
tions detectable by a biologist can be classified by machine learn-
ing. This approach is therefore applicable to those situations in
which clear visual distinctions exist in the co-cultured cell types,
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and where those distinctions can be quantified by the feature cat-
egories of ilastik. In general, as in this study, one can use nuclear
morphology to distinguish any mouse cell type vs human cell type
because the former has more textured chromatin [15]. Also note
that ilastik feature sets can be extended by the computational biol-
ogist if needed. This should allow a broad range of co-culture sys-
tems to be analyzed with this new method.

4. Conclusions

In summary, we developed a workflow using pixel-based
machine learning for analysis of hepatocyte/fibroblast co-culture
systems that yields improved accuracy and robustness over prior
object-based machine learning workflows. The new workflow is
streamlined, requiring less hands-on time, less image processing
expertise (due to fewer parameters to be tuned), and fewer com-
puting resources (because morphological features of each nucleus
need not be measured unless of interest in the experiment).

Because all software used in the new workflow is open-source,
it is freely available as well as customizable. Therefore, the strategy
presented here can be adapted and applied to a wide variety of
other applications where segmentation is difficult. Potential exper-
imental uses of this workflow include a number of other physiolog-
ically relevant model systems, especially other co-culture systems
such as leukemia stem cells in a bone marrow microenvironment
[16], parasite classification [17], and tissue samples stained with
standard, non-fluorescent dyes [18]. In addition, ilastik has a plu-
gin system that allows programmers to add problem-specific fea-
tures to enrich the pixel-based classification. We have made the
pipelines, example images, and all software freely available online
for the scientific community to build upon.
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