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SUMMARY
Malaria eradication is a major goal in public health but is challenged by relapsing malaria species, expanding drug resistance, and the

influence of host genetics on antimalarial drug efficacy. To overcome these hurdles, it is imperative to establish in vitro assays of liver-

stage malaria for drug testing. Induced pluripotent stem cells (iPSC) potentially allow the assessment of donor-specific drug responses,

and iPSC-derived hepatocyte-like cells (iHLCs) can facilitate the study of host genetics on host-pathogen interactions and the discovery

of novel targets for antimalarial drug development. We establish in vitro liver-stage malaria infections in iHLCs using P. berghei, P. yoelii,

P. falciparum, and P. vivax and show that differentiating cells acquire permissiveness to malaria infection at the hepatoblast stage.We also

characterize antimalarial drug metabolism capabilities of iHLCs using prototypical antimalarial drugs and demonstrate that chemical

maturation of iHLCs can improve their potential for antimalarial drug testing applications.
INTRODUCTION

Malaria affects 250 million people and causes approxi-

mately onemillion deaths each year (World HealthOrgani-

zation, 2013). As an obligatory stage of the Plasmodium life

cycle that occurs soon after infection of the human host,

the liver stage is an attractive target for the development

of antimalarial drugs and vaccines (Mazier et al., 2009; Pru-

dêncio et al., 2006), especially with the goal of malaria

eradication. Current in vitro models of liver-stage malaria

commonly utilize hepatic cell lines such as HepG2 or

HC04 in conjunction with Plasmodium sporozoites from

either rodent malaria species (P. berghei, P. yoelii) or human

malaria species (P. falciparum, P. vivax), which have liver

stages that range in length from 2 days for P. berghei and

P. yoelii to 6–8 days for P. falciparum and P. vivax. Due to

their better maintenance of hepatic drug metabolism en-

zymes compared to hepatic cell lines and the fact that

they are the natural host for malarial sporozoites, primary

human hepatocytes are a preferable cell type to model

liver-stage malaria in vitro for the purposes of antimalarial

drug development. These traits of primary human hepato-

cytesmean theymay offer better predictive value in in vitro

liver-stage malaria phenotypic drug screens and may more

accurately recapitulate host-pathogen interactions in vitro

than the cell lines that are typically used formodeling liver-

stage malaria (March et al., 2013). However, primary hu-

man hepatocytes are sourced from a small pool of donors
348 Stem Cell Reports j Vol. 4 j 348–359 j March 10, 2015 j ª2015 The Auth
and thus may not represent the genetic diversity of the hu-

man population.

Pluripotent stem cell-derived hepatocytes overcome

some of the drawbacks of cell lines, fetal tissue, and adult

human sources and may be considered an alternative

source of primary human hepatocytes. Compared to pri-

mary human hepatocytes, stem cell-derived hepatocytes

can represent more diverse genotypes, can be personalized

to exhibit rare genotypes, and are renewable in culture. Hu-

man pluripotent embryonic stem cells were first isolated

from human blastocysts (Thomson, 1998), but embryonic

stem cells face considerable ethical issues with regards to

their availability and use. More recently, the enforced

expression of various factors in a variety of differentiated

cell types led to the generation of induced pluripotent

stem cells (iPSCs) (Takahashi et al., 2007). In particular,

iPSCs can, in a reliable and stepwise manner, differen-

tiate through the developmentally appropriate stages

(i.e., endoderm, hepatic specified endoderm, hepatoblasts)

to produce hepatocyte-like cells (iHLCs) in vitro (Schwartz

et al., 2014). The ability to generate iHLCs from different

donors provides an opportunity to assess donor-specific

drug responses in vitro, akin to conducting an in vitro clin-

ical trial. Our prior work has shown that iHLCs are suscep-

tible to hepatotropic pathogens such as hepatitis C and

hepatitis B virus infection (Schwartz et al., 2012; Shlomai

et al., 2014). It remains to be seen whether iHLCs can

serve as a host population for liver-stage malaria assays,
ors
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especially considering that iHLCs generated using current

state of the art protocols are developmentally immature

and more closely resemble fetal hepatocytes in their cyto-

chrome P450 expression and activity profiles as well as in

their antigen expression (Si-Tayeb et al., 2010). However,

recent promising attempts tomature iHLCs to amore adult

phenotype, including the identification of small molecules

(Shan et al., 2013), genetic manipulation with transduc-

tion of a gene for a hepatic transcription factor (Takayama

et al., 2012), a combination of 3D culture and cAMP

signaling (Ogawa et al., 2013), or in vivo transplantation

(Takebe et al., 2013), may ultimately contribute to the gen-

eration of appropriatelymature iHLCs for antimalarial drug

screens, which, to date, have largely been carried out in hu-

man hepatoma cells (da Cruz et al., 2012; Derbyshire et al.,

2012; Meister et al., 2011). Isogenic iHLCs that are more

developmentally mature may also facilitate the discovery

of host factors for the Plasmodium liver stages.

In this study, we show the feasibility of infecting iHLCs

with Plasmodium sporozoites in vitro and demonstrate Plas-

modium parasite development over time in culture. We

identify the stage at which cells acquire permissiveness to

liver-stage malaria infection during the differentiation pro-

cess. It is also necessary to characterize the responses ofma-

laria-infected iHLCs to known antimalarial drugs in order

to establish the utility of this cell type for use in in vitro

liver-stage malaria phenotypic drug screens. We observe

that iHLCs are not responsive to the antimalarial drug pri-

maquine and hypothesize this deficiency is due to a lack

of bioactivation of the drug by hepatic cytochrome P450

drug metabolism enzymes. Consistent with this model,

we further demonstrate that chemically matured iHLCs ac-

quire primaquine sensitivity, highlighting the potential to

use iHLCs for antimalarial drug testing.
RESULTS

iPSC-Derived Hepatocyte-like Cells Support Liver-

Stage Malaria Infection In Vitro

iPSC-derived hepatocyte-like cells (iHLCs) were generated

using a 20 day in vitro differentiation protocol that recapit-

ulates the different stages of hepatic development (Si-Tayeb

et al., 2010). During this differentiation process, iPSCs

adopt an endoderm fate at 5 days and becomehepatic-spec-

ified endoderm cells at 10 days, hepatoblasts at 15 days,

and iHLCs at 20 days after the initiation of differentiation,

respectively (Figure 1A). iHLCs demonstrate typical polyg-

onal hepatocyte morphology (Figure 1B) and express pro-

totypical hepatic markers like human albumin, a1-anti-

trypsin, and a-fetoprotein (Figure 1C). The two known

host entry factors for liver-stage malaria, CD81 and SRB1,

are both transcribed and translated in iHLCs (Figures 1D
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and 1E), and the proteins are appropriately localized on

the cell surface, as observed via immunofluorescence assays

(Figures 1F and 1G). Based on these observations, we hy-

pothesized that day 20 iHLCs may support Plasmodium

infection.

Cultures of iHLCs were overlaid with media containing

P. berghei sporozoites for 3 hr and fixed at 1, 2, or 3 days

postexposure. Immunofluorescence assays using anti-

bodies specific for P. bergheiHSP70 were conducted in order

to quantitate iHLC infection by P. berghei (Figure 2A).

HSP70-expressing exoerythrocytic forms (EEFs) were de-

tected as early as 1 day postinfection, and larger EEFs

were observed at later time points (Figures 2A and 2B).

Furthermore, at 3 days postinfection the P. berghei (P.b.)

EEFs expressed the mature EEF marker, MSP-1 (Figure 2C),

suggesting that P.b. EEF maturation occurred along with

P.b. EEF growth. In addition, separate cultures of iHLCs

were infected with an alternate rodent Plasmodium species,

P. yoelii (P.y.), and were shown to support P.y. EEFs that also

increased in size over a 48 hr period postinfection (Figures

2D and 2E). iHLCs were next tested for their capacity to be

infected by the human malaria parasite, P. falciparum (P.f.),

and were found to harbor HSP70-expressing P.f. EEFs at

3 days postexposure (Figure 2F). Moreover, at 6 days post-

exposure, P.f. EEFs also expressed the liver-stagematuration

marker, P.f. MSP-1 (Figure 2G; 10%–35% P.f. EEFs, as

compared to 45% for P.b. EEFs), and increased in size

compared to those observed at 3 days postexposure to P.f.

sporozoites (Figures 2F and 2H). In addition to P.f., iHLCs

were also infected with sporozoites of a different human

malaria species, P. vivax (P.v.), and were found to support

HSP70-expressing P.v. EEFs that also increased in size

from an average of 5 mm at 3 days postinfection to a wide

range of sizes up to 77 mm by 8 days postinfection (Figures

2I and 2J). These results indicate that iHLC infectibility

with Plasmodium sporozoites is not restricted to the rodent

malaria species, and that the in-vitro-derived host cells can

also support EEF maturation. Last, differentiated iHLCs

were phenotypically stable and could be infected with P.f.

sporozoites up to day 55 after initiation of differentiation

(Figure S1 available online), whichwas the latest time point

tested for Plasmodium infectibility in this study.

Kinetics of Acquisition of Permissiveness to

Plasmodium Infectibility

To determine at what point in the 20 day in vitro differ-

entiation process that iPSC-derived hepatic lineage cells

become susceptible to malaria infection, cells at different

stages of differentiation (iPS cells, endoderm, hepatic-

specified endoderm, hepatoblast, iHLCs) were exposed

to sporozoites obtained from a single batch of P.f.-in-

fected A. gambiae mosquitoes. At 4 days postinfection,

no P.f. EEFs were observed in iPSCs, whereas a small
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Figure 1. Characterization of iHLCs Derived by In Vitro Differentiation of iPSCs
(A) Schematic of protocol for the in vitro differentiation of iPS cells to iHLCs.
(B) Representative bright-field image showing typical hepatic morphology of iHLCs at d20 postdifferentiation.
(C) Kinetics of human albumin, a1-anti-trypsin (A1AT), and a-fetoprotein (AFP) secretion over the course of differentiation from iPS cells
to iHLCs. n = 3 biological replicates per condition. Data are represented as mean ± SEM.
(D) Representative RT-PCR analysis of CD81 and SRB1 gene expression over the course of differentiation from iPS cells to iHLCs. n = 3
biological replicates per condition. Data are represented as mean ± SEM.
(E) Representative western blot analysis of CD81 and SRB1 protein expression over the course of differentiation from hepatic-specified
endoderm cells to iHLCs. n = 2 biological replicates are shown.
(F and G) Representative immunofluorescence images of d20 iHLCs expressing (F) CD81 and (G) SRB1.
Scale bars, 50 mm.
number were observed in endoderm cells (d5 cells) and

hepatic-specified endoderm cells (d10 cells) (Figures 3A

and 3B). However, the number of P.f. EEFs was signifi-

cantly higher in hepatoblasts (d15 cells) than in hepat-

ic-specified endoderm cells and the frequency of infec-

tion remained elevated in differentiated iHLCs (d20

cells) (Figures 3A and 3B). Although some variability is

observed between experiments regarding the relative

number of P.f. EEFs observed between d15 and d20 cells

(Figure 3B, left versus right), likely a product of the estab-

lished stochastic nature of the iHLC differentiation pro-

cess and also a function of heterogeneity of iPSC-derived

progeny in each well, we consistently observed acquisi-

tion of more robust P.f. susceptibility between days 10

and 15 of the directed differentiation protocol. Notably,

the size distributions of observed P.f. EEFs at 4 days post-

infection were not significantly different at any time

point (d5, d10, d15, d20 postdifferentiation) (Figure 3C),
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suggesting that the rare cells that exhibit permissiveness

to Plasmodium sporozoite infection at earlier time points

were already capable of supporting parasite survival and

growth for at least 4 days postinfection. This pattern is

emphasized by the observations at 6 days postinfection

that d15 hepatoblasts maintained similar levels of P.f.

infection as d20 iHLCs (Figure S2A), exhibited increased

P.f. EEF sizes than at 4 days postinfection (Figure S2B),

and supported the maturation of P.f. EEFs as demon-

strated by the expression of the liver-stage maturation

marker, P.f. MSP-1 (Figures S2A and S2C), and the appear-

ance of merosome-like structures (Figure S2D). However,

a higher proportion of P.f. EEFs in d20 iHLCs express

P.f. MSP1 (�40%) than those in d15 hepatoblasts

(�20%) (Figure S2A), and the P.f. EEF size distribution is

larger in iHLCs than in hepatoblasts (Figure S2B) at

6 days postinfection. These data suggest that, whereas

hepatoblasts are also capable of supporting P.f. EEF
ors



survival, growth, and maturation, P.f. EEFs in hepato-

blasts may develop to either a slower or smaller degree

than those in iHLCs. In addition to their capacity to

be infected by P.f. sporozoites, d16 hepatoblasts and

completely differentiated iHLCs both support similar

numbers of P.y. EEFs at 2 days postinfection (Figure S2E),

suggesting that incompletely differentiated hepatoblasts

have also acquired sufficient host factors to allow the in-

vasion and growth of rodent Plasmodium sporozoites.

Plasmodium-Infected iHLCs Are Sensitive to

Atovaquone but Not Primaquine

Because iHLCs obtained via the current iPSC in vitro differ-

entiation protocol express a relatively low level of 83 hu-

man hepatic drug metabolism enzymes (DMEs) compared

to primary human hepatocytes (Shan et al., 2013), we hy-

pothesized that Plasmodium-infected iHLCs may only

respond to antimalarial drugs that are active in their parent

form, such as atovaquone (Biagini et al., 2012), and not to

drugs that require bioactivation by hepatic DMEs in order

to demonstrate inhibitory activity against the Plasmodium

liver stages, such as primaquine (Bennett et al., 2013; Pybus

et al., 2013). Indeed, when iHLCs infected with P. yoelii

sporozoites were treated with 10 nM atovaquone or

10 mM primaquine starting at 3 hr postinfection, only the

atovaquone-treated cultures were blocked in their ability

to support P.y. EEFs (Figure 4A). In contrast, no differences

in the number or size distribution of P.y. EEFs were observed

in primaquine-treated iHLCs infected at either 23 or

28 days postdifferentiation (Figures 4B and 4C), suggesting

that primaquine exposure had no impact on the infection

or growth of P.y. EEFs. This finding supports the hypothesis

that, whereas iHLCs support P.y. invasion and P.y. EEF

growth, they do not express the appropriate hepatic

DMEs, and/or other host factors, necessary for the bio-

activation of primaquine into a form that can inhibit

liver-stage P.y. EEFs. To confirm that the absence of prima-

quine sensitivity of Plasmodium-infected iHLCs extends

to the human Plasmodium species, iHLCs were infected

with P. falciparum sporozoites, and primaquine treatment

was started 3 hr postexposure to sporozoites. As observed

following infection with P.y., primaquine treatment of

P.f.-infected iHLCs did not reduce the number of P.f. EEFs

(Figure 4D), nor did it alter the P.f. EEF size distribution

(Figure 4E).

Small Molecule-Mediated Maturation of iHLCs

Confers Primaquine Sensitivity

In order to utilize iHLCs in antimalarial phenotypic drug

screens, it would be highly advantageous to obtain iHLCs

with a developmentallymature hepatic DME profile. A pre-

vious high-throughput small molecule screen identified

two small molecules capable of promoting transcriptional
Stem C
upregulation of many adult human hepatic DMEs (Shan

et al., 2013), including the four DMEs CYP2D6, CYP3A4,

CYP2C19, and MAO-A, that are responsible for the major-

ity of primaquinemetabolism and bioactivation in hepato-

cytes (Jin et al., 2014; Pybus et al., 2012, 2013). To test

whether maturation of iHLCs induced by of these small

molecules, FPH1, confers primaquine sensitivity, iHLCs

were treated with either FPH1 or the DMSO carrier for a to-

tal of 6 days (treatment phase, D21–26). The iHLCs were

cultured for an additional 1–2 days without the smallmole-

cule (washout phase, D27–28) before being exposed to Plas-

modium sporozoites, in order to avoid any direct effects of

the small molecule or DMSO on sporozoite infectivity, or

on eventual drug sensitivity during the liver-stage infection

(Figure 5A).

For the purposes of a moving toward an eventual high-

throughput screening protocol, we used a bioluminescent

strain of P. yoelii that expresses firefly luciferase (P.y.-luc)

to readout parasite infection and growth in the presence

of primaquine following FPH1-induced maturation of

iHLCs. The bioluminescence of P.y.-luc liver-stage EEFs

is directly proportional to the total liver-stage load, as

measured by RT-PCR (Miller et al., 2013; Mwakingwe

et al., 2009), and is also a function of the total number

of EEFs per well and the mean EEF diameter in that

well (Figure S3). Although P.y.-luc infection (as measured

by BLI) in DMSO-treated iHLCs did not decrease upon

primaquine treatment, iHLCs pretreated with FPH1

exhibited significantly lower levels of P.y.-luc infection

(Figure 5B).

To determine whether primaquine sensitivity was also

achieved in P. falciparum-infected iHLCs, iHLCs were pre-

treatedwith FPH1 or DMSO and exposed to P.f. sporozoites.

At 4 days postinfection, the infected cultures were fixed,

and P.f. infection was quantified by manual counts of P.f.

EEFs immunostained for PfHSP70. As predicted, iHLCs pre-

treated with DMSO supported an equivalent number and

size distribution of P.f. EEFs in the presence or absence of

primaquine during infection. However, iHLCs pretreated

with FPH1 exhibited a significant decrease in the number

of P.f. EEFs present when infected in the presence of pri-

maquine (Figure 5C). Furthermore, the fewer P.f. EEFs

observed in FPH1 pretreated iHLCs showed a significant

decrease in their size distribution (Figure 5D). Collectively,

the data clearly show that primaquine becomesmore effec-

tive against both P. yoelii and P. falciparum EEFs in cells

exposed to FPH1.
DISCUSSION

In this study, we show the feasibility of infecting iHLCs

with P. berghei, P. yoelii, P. falciparum, and P. vivax.
ell Reports j Vol. 4 j 348–359 j March 10, 2015 j ª2015 The Authors 351



Figure 2. iHLCs Are Susceptible to Liver-Stage Plasmodium Infection
(A and B) (A) Representative immunofluorescence images of P. berghei (P.b.) EEFs and (B) P.b. EEF size distributions at D1, D2, or D3
postinfection in iHLCs.
(C) Representative immunofluorescence image of MSP1-positive P.b. EEF at D3 postinfection.
(D and E) (D) Representative immunofluorescence images of P. yoelii (P.y.) EEFs and (E) P.y. EEF size distributions at D1 or D2 postinfection
in iHLCs.

(legend continued on next page)
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Figure 3. Kinetics of Acquisition of
Permissiveness to Plasmodium Infecti-
bility
(A) Representative IF images of
P. falciparum (P.f.) EEFs from cells infected
at various stages after the initiation of iPSC
differentiation at D4 postinfection. Scale
bars, 5 mm.
(B) Peak susceptibility to P.f. infection is
attained at d15 after the initiation of dif-
ferentiation, at the hepatoblast stage. The
left and right panels represent two separate
experiments using iHLCs from the same line
but two separate differentiations, which
were infected with two separate batches
of P.f. sporozoites. n = 3 biological repli-
cates per condition. Data are represented as
mean ± SEM.
(C) Size distributions of P.f. EEFs obtained
from an infection of cells at the endoderm
(d5), hepatic-specified endoderm (d10),
hepatoblast (d15), or iHLC (d20) stage.
*p < 0.05, ***p < 0.001; one-way ANOVA
with Tukey’s multiple comparison test. See
also Figure S2.
Liver-stage Plasmodium EEFs grow in size over time and ex-

press MSP-1, which is typically expressed in more mature

EEFs. Although iPS cells and definitive endoderm cells are

generally not infectible with P. falciparum, some degree of

P. falciparum infectibility is acquired by the time the cells

are further differentiated to a hepatic-specified endoderm

lineage. Notably, populations of hepatoblasts are equally

or more infectible than the resulting iHLCs at the end of

the in vitro differentiation protocol. iHLCs generated by

the existing differentiation protocol do not respond to

primaquine, a malaria drug that requires bioactivation

by mature hepatic cytochrome P450 (CYP450) enzymes.

However, further maturation of iHLCs using a previously

described small molecule results in the acquisition of pri-

maquine sensitivity, such that the drug treatment dimin-

ished infection by P. yoelii and P. falciparum.
(F and H) (F) Representative immunofluorescence images of P. falc
postinfection in iHLCs.
(G) Representative immunofluorescence image of MSP1-positive P.f.
(I and J) (I) Representative immunofluorescence images of P. vivax (P
in iHLCs.
Scale bars, 5 mm. See also Figure S1.
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In the context of drug development, there has been a

shift from the traditional paradigm of testing drugs in

immortalized cell lines to the use of primary cells, which

have been increasingly recognized to offer better physio-

logical relevance to drug screening and disease modeling

in vitro (Engle and Puppala, 2013). A key goal of early-stage

drug discovery platforms is the elimination of drug candi-

dates that generate toxic metabolites that can cause drug-

induced liver injury (DILI), a key cause of drug removal

from the market (McDonnell and Braverman, 2006). To

this end, a hepatic cell type that accurately recapitulates

the native cellular physiology of an adult human hepato-

cyte is advantageous, but most hepatic cell lines lack the

expression of a wide array of such key adult hepatic

metabolism activity (March et al., 2013) because they are

largely tumor derived (i.e., HepG2) or tumor associated
iparum (P.f.) EEFs and (H) P.f. EEF size distributions at D3 or D6

EEF at D6 postinfection.
.v.) EEFs and (J) P.v. EEF size distributions at D3 or D8 postinfection
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Figure 4. Plasmodium-Infected iHLCs Are Sensitive to Atovaquone but Not Primaquine
(A) Number of P. yoelii (P.y.) EEFs per well in iHLCs that were infected at 21 days postdifferentiation in the presence or absence of 10 nM
atovaquone (ATQ). n = 3 biological replicates per condition.
(B and C) (B) Number of P.y. EEFs per well and (C) size distributions of P.y. EEFs in iHLCs that were infected at 23 or 28 days post-
differentiation in the presence or absence of 10 mM primaquine (PQ). n = 3 biological replicates per condition.
(D and E) (D) Number of P. falciparum (P.f.) EEFs per well and (E) size distributions of P.f. EEFs in iHLCs that were infected at 29 days
postdifferentiation in the presence or absence of 10 mM primaquine.
n = 3 biological replicates per condition. Two-tailed t test run for panels (B)–(E). Data are represented as mean ± SEM.
(i.e., HC04). A second major goal of drug discovery plat-

forms is the ability to identify nontoxic compounds that

demonstrate differential efficacy in a phenotypic screen

relevant to a disease. In the case of drug discovery against

themalarial liver stages, it is therefore highly advantageous

to utilize a cell type that best represents the primary adult

hepatocyte. At the same time, it is also ideal to represent

highly polymorphic genetic variants in drug metabolism

and different ethnic groups in such drug screens, as these

factors may influence the efficacy of potential antimalarial

drug candidates. For example, genetic polymorphisms in

CYP2D6 metabolism that stratified P. vivax patients into

poor, intermediate, or extensive CYP2D6 metabolizers

were recently reported to correlate with the risk of a failure

of primaquine to prevent malaria relapse due to P. vivax

(Bennett et al., 2013). Several cell sources have been pro-

posed to augment the genetic variation and supply of adult

primary human hepatocytes, including xenogenic or fetal

human tissue, or embryonic stem cell-derived hepatocytes,
354 Stem Cell Reports j Vol. 4 j 348–359 j March 10, 2015 j ª2015 The Auth
but these sources are hampered by safety, ethical, or sourc-

ing issues.

iPSC-derived iHLCs offer a unique advantage in that they

can be generated from any donor, which allows a broad

spectrum of the human population to be represented in

in vitro drug screens and provides an opportunity to assess

donor-specific drug responses in vitro. Recent collabora-

tions between drug discovery companies and academic lab-

oratories (Engle and Puppala, 2013) mark the development

of an infrastructure that will benefit future personalized

models of human diseases, including hepatotropic diseases

like the relapsing forms of malaria.

iPSCs can also be engineered using DNA editing tech-

niques to incorporate any genetic abnormality ormodifica-

tion to enable the exploration of the role that host genetics

plays in liver-stage malaria infection. Although clinically

relevant host factors that influence hepatic susceptibility

to liver-stagemalaria infection have not been documented,

the study of potential host factors may benefit from the
ors



Figure 5. Small Molecule-Mediated Maturation of iHLCs Confers Primaquine Sensitivity
(A) Schematic of small molecule dosing of iHLCs before infection with P. yoelii-luciferase (P.y.-luc) or P. falciparum (P.f.).
(B) Effect of FPH1 pretreatment on primaquine (PQ) sensitivity (closed bars, 10 mM primaquine) of iHLCs infected with P.y.-luc. Infection
was measured by bioluminescence imaging of P.y.-luc-infected iHLCs. n = 4 biological replicates per condition. *p < 0.05, two-tailed t test.
See also Figure S3.
(C) Effect of FPH1 pretreatment on primaquine sensitivity of iHLCs infected with P.f. Infection was measured by counting the number of
P.f. EEFs per well. n = 4 biological replicates per condition. *p < 0.05, two-tailed t test.
(D) Size distributions of P.f. EEFs in P.f.-infected iHLCs that were pretreated with the DMSO carrier or FPH1 and treated with or without
10 mM primaquine after infection. ****p < 0.0001, two-tailed t test. Data are represented as mean ± SEM.
larger pool of genetic variation that is accessible with the

use of iPSCs. This effort may have implications in drug dis-

covery against the liver stages of malaria species that pre-

sent with large genetic heterogeneities in different parts

of the world, especially the relapsing malaria species like

P. vivax (e.g., temperate versus tropical strains), which

may have coevolved to infect geographically distinct hu-

man populations (Cui et al., 2003; Dondorp et al., 2009;

Gunawardena et al., 2010; Li et al., 2001).

From a developmental standpoint, the infectibility of

iHLCs with liver-stage malaria and other hepatotropic

pathogens such as the hepatitis viruses could also be a po-

tential biomarker of hepatic lineage commitment, with
Stem C
iPSCs becoming permissive only when they become suffi-

ciently hepatocyte-like. The ability to study liver-stage ma-

laria infection at different developmental stages during the

in vitro directed differentiation of iPSCs into iHLCs within

a single donor may also facilitate the identification of host

factors required for permissiveness to Plasmodium sporo-

zoite infection and the elucidation of the roles that these

host factors play in malaria pathogenesis.

One potential measure of how developmentally close

iHLCs are to primary human hepatocytes is the efficiency

of liver-stage malaria infection of iHLCs compared to

primary human hepatocytes. With the multiplicity of

infection (MOI) of approximately 0.5 used in the above
ell Reports j Vol. 4 j 348–359 j March 10, 2015 j ª2015 The Authors 355



P. falciparum experiments (with respect to the estimated

number of iHLCs per well based on an estimate of differen-

tiation efficiency), an infection rate of approximately 0.3–

1.8 P.f. EEFs per 10,000 iHLCs is obtained. In comparison,

a microscale human liver platform that was recently re-

ported to support P. falciparum infection in primary human

hepatocytes reported an infection rate of approximately

100 P.f. EEFs per 10,000 hepatocytes at 3.5 days after infec-

tion with anMOI of 15 (March et al., 2013). Assuming that

the infection rate scales linearly with MOI for the purposes

of this analysis, an MOI of 0.5 in primary human hepato-

cytes would be estimated to give rise to an infection rate

of approximately 3 P.f. EEFs per 10,000 hepatocytes. This

suggests that iHLCs exhibit anywhere from 10%–60% of

the infectibility of primary human hepatocytes and indi-

cates that iHLCs have acquired sufficient hepatocyte-like

characteristics that confer infectibility with liver-stage

malaria.

The observation that iHLCs are infectible with malaria

before their in vitro differentiation is complete could reflect

the acquisition of some liver-stage malaria host entry fac-

tors during the iPSC differentiation process, or heterogene-

ity in iPSC differentiation that results in faster hepatic

maturation of a subpopulation of cells. This observation

could also suggest the possibility of some promiscuity in

the host entry factors that are required for Plasmodium

sporozoite entry. Further studies are required to determine

whether the EEFs observed in incompletely differentiated

iPSCs reflect fully replication-competent EEFs, or whether

such EEFs are prone to developmental arrest due to the

absence (or presence) of some host factor that promotes

(or inhibits) parasite development. It is intriguing that hep-

atoblasts appear to support similar P. falciparum infection

rates and similar degrees of parasite growth as iHLCs, with

some experiments even exhibiting a trend of increased

numbers of P.f. EEFs or P.y. EEFs in hepatoblasts compared

to iHLCs (Figures 3B, left, and S2E). This slight difference

in infectibility could suggest the acquisition of sufficient

host entry factors that support Plasmodium infection and

development by d15 postinitiation of differentiation from

iPSCs, but that further maturation beyond the hepatoblast

stage results in the acquisition of other host factors that

henceforth limit EEF development and survival. Because

the cells in different stages of in vitro differentiation arise

from the same donor, these observations also offer a clean

comparative system in which to systematically probe and

identify host factors that are essential for liver-stagemalaria

parasite infections, using proteomics or gene expression

technologies, in a donor-independent manner.

A common shortcoming of iHLCs and other iPSC-

derived cells lies in the fact that they often resemble a

developmentally immature state compared to the fully

differentiated adult counterpart (Engle and Puppala,
356 Stem Cell Reports j Vol. 4 j 348–359 j March 10, 2015 j ª2015 The Auth
2013). In the field of iHLCs, current in vitro differentiation

protocols result in the production of a hepatic cell type that

is biologically closer to fetal hepatocytes than adult hepato-

cytes, due to the incomplete abrogation of the expression

of fetal markers such as alpha-fetal protein (AFP) (Si-Tayeb

et al., 2010; Song et al., 2009), and the incomplete acquisi-

tion of an adult-like levels of key secretory, detoxification,

and metabolic activity (Shan et al., 2013). Our data show

that further chemical maturation of iHLCs allows the

acquisition of primaquine sensitivity, presumably via the

acquisition of a drug metabolism enzyme (DME) expres-

sion profile that better resembles the adult human hepato-

cyte. This advance decreases the biological gap between

iHLCs and primary adult hepatocytes and increases the

potential utility of iHLCs in drug development efforts for

malaria and other diseases. The expression of a develop-

mentally mature repertoire of hepatic DMEs is particularly

important considering that current drug development ef-

forts towardmalaria eradication revolves around the 8-ami-

noquinoline family, which is currently the only class of

drugs that is efficacious against the cryptic hypnozoite

stage of P. vivax liver-stage infections (Wells et al., 2009),

and the fact that many existing antimalarial drugs such

as proguanil, artemether, lumefantrine, and halofantrine

are known to undergo metabolism in the liver by hepatic

DMEs (Khoo et al., 2005) and whose in vitro efficacy will

therefore likely be predictive of in vivo efficacy only if the

in vitro hepatocyte model exhibits a primary human hepa-

tocyte DME expression profile. Although the primaquine

response in iHLCs pretreated with FPH1 was incomplete,

other primary human hepatocyte models of P. falciparum

treated with the same primaquine concentration (10 mM)

also exhibit an incomplete response, with about 10%–

20% of the number of P.f. EEFs remaining (Dembele et al.,

2011; March et al., 2013). An unexpected finding was

that FPH1 pretreatment also increased the baseline number

of P.f. EEFs in iHLCs in the absence of primaquine treat-

ment compared to DMSO pretreatment (Figure 5C). The

chemical maturation of iHLCs by FPH1 is likely to involve

a complex mechanism, which could theoretically result

either in an increase in the adult hepatic phenotype

of the existing population of iHLCs and hence their infect-

ibility by Plasmodium sporozoites, or an expansion in the

population of iHLCs or of other hepatic progenitors.

Chemically matured iHLCs with increased baseline infect-

ibility with Plasmodium could therefore provide an oppor-

tunity to elucidate hepatic host factors that promote

liver-stage malaria infection in hepatocytes.

In conclusion, the establishment of Plasmodium liver-

stage infections in induced pluripotent stem cell-derived

hepatocyte-like cells lays the foundation for their use in

antimalarial drug discovery as well as paves the way to

study the genetic basis of host-Plasmodium interactions.
ors



EXPERIMENTAL PROCEDURES

iPSC Culture and Hepatocyte-like Cell Generation
Undifferentiated iPSC were maintained and differentiated into

iHLCs as described (Si-Tayeb et al., 2010). In brief, iPSCs were

cultured in monolayer on Matrigel (Becton Dickinson), and

directed differentiation was achieved by sequential exposure to

activin A, bonemorphogenic protein 4, basic FGF, HGF, and oncos-

tatinM (OSM). For P. berghei and P. yoelii experiments, iHLCs differ-

entiated from the iPSC lines, RC2 (reprogrammed from fibroblasts

by the laboratory of Darrell Kotton at Boston University) (Somers

et al., 2010), iPS.C2a (reprogrammed from foreskin fibroblasts by

the laboratory of Stephen Duncan at Medical College of Wiscon-

sin) (Si-Tayeb et al., 2010), or LN4 (a subclone of iPS.C2a with

higher uniformity in growth and differentiation) were used. For

P. falciparum experiments, iHLCs differentiated from the iPSC

line, LN4, or cryopreserved iHLCs fromCellularDynamics Interna-

tional (white female donor, iPSCs reprogrammed from fibroblasts,

iCell Hepatocytes 2.0, CDI) were used. For P. vivax experiments,

cryopreserved iHLCs (white female donor, iPSCs reprogrammed

from fibroblasts, or white male donor, iPSCs reprogrammed from

peripheral blood mononuclear cells, iCell Hepatocytes 2.0, CDI)

were used. Cryopreserved iHLCs from CDI were thawed, plated

on collagen I, and maintained according to the manufacturer’s in-

structions until used.

Sporozoites
P. berghei ANKA and P. yoelii sporozoites were obtained by dissec-

tion of the salivary glands of infected Anopheles stephensi mosqui-

toes obtained from the insectaries at New York University or

Harvard School of Public Health. P. falciparum sporozoites were ob-

tained by dissection of the salivary glands of infected Anopheles

gambiaemosquitoes obtained from the insectary at Johns Hopkins

School of Public Health. P. vivax sporozoites were kindly provided

by the insectary at Mahidol Vivax Research Center (Bangkok,

Thailand) and were prepared by dissection of the salivary glands

of infected Anopheles dirus mosquitoes.

Infection of iHLCs
P. berghei, P. yoelii, P. falciparum, or P. vivax sporozoites from

dissected mosquito glands were centrifuged at 600 3 g for 5 min

on to iHLCs at a multiplicity of infection of 0.1–1 in the presence

of 2% fetal bovine serum. After incubation at 37�C and 5%CO2 for

2–3 hr, the wells were washed twice before serum-free culture me-

dium was added. Media was replaced daily. Samples were fixed 24,

48, or 65 hr postinfection with P. berghei and P. yoelii, 3, 4, or 6 days

postinfectionwith P. falciparum, and 3 or 8 days postinfection with

P. vivax. For P. vivax experiments, iHLCs from CDI were exposed to

P. vivax sporozoites at 4 days postplating.

Immunofluorescence Assay
iHLCs were fixed with�20�Cmethanol for 10 min at 4�C, washed

thrice with PBS, blocked with 2% BSA in PBS overnight at 4�C, and
then incubated overnight at 4�C with a primary antibody: mouse

anti-human CD81 (clone JS-81, BD Pharmingen; 1:200), rabbit

anti-SRB1 (Novus Biologicals; 1:100), mouse anti-PbHSP70 (clone

2E6; 1:200 for P. berghei and P. yoelii), rabbit anti-PbMSP1 (1:500
Stem C
for P. berghei), mouse anti-PfHSP70 (clone 4C9, Sanaria; 1:200 for

P. falciparum), or mouse anti-PfMSP1 (1:200 for P. falciparum). Sam-

ples were washed thrice with PBS before incubation for 1–3 hr at

room temperature with secondary antibody: goat anti-mouse

Alexa Fluor 594 or Alexa Fluor 488 or donkey anti-rabbit-Alexa

Fluor 488 (Invitrogen; 1:400). Nuclei were then counterstained

with Hoechst 33258 (Invitrogen; 1:1000), samples were washed

thrice with PBS, and 1 ml of Aquamount (Thermo-Scientific) was

added per well. Images were captured on a Nikon Eclipse Ti fluores-

cence microscope or an Olympus FV1000 multiphoton laser scan-

ning confocal microscope.

Biochemical Assays
Cell culture supernatants were collected and stored at –20�C. Hu-

man albumin, a1-anti-trypsin (A1AT), and a-fetoprotein (AFP)

secretionweremeasured by enzyme-linked immunosorbent assays

with horseradish peroxidase detection (Bethyl Labs) and 3,30,5,50-
tetramethylbenzidine (TMB, Pierce) development.

Statistics
Experiments were repeated with three or more independent

batches of differentiated iHLCs with triplicate or quadruplicate

biological samples for each condition. Data from representative

batches of iHLCs are presented. Two-tailed t tests were performed

for all comparisons between two conditions (e.g., with or without

primaquine). One-way ANOVAs were performed for comparisons

involving three or more conditions (e.g., number of EEFs in

cells infected at various time points after differentiation) with Tu-

key’s post hoc test for multiple comparisons. All error bars repre-

sent SEM.
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Figure S1, Related to Figure 2. Long-term maintenance of infectibility with P. falciparum in 

iHLCs. Representative IF images of P. falciparum EEFs at D3.5 post-infection in iHLCs at d55 

post-differentiation, or 35 days after differentiation was completed. Scale bars = 5 µm. 

 



 

 

Figure S2, Related to Figure 3. Hepatoblasts and iHLCs support late-stage P. yoelii and P. 

falciparum infections. (A) Total number of P.f. EEFs (HSP70
+
) and number of mature MSP1

+
 P.f. 

EEFs at D6 post-infection in hepatoblasts (d15) and iHLCs (d20). n = 3 biological replicates per 

condition. (B) Size distributions of P.f. EEFs at D6 post-infection in hepatoblasts and iHLCs. (C) 

Representative immunofluorescence images of HSP70
+
 or MSP1

+
 P.f. EEFs at D6 post-infection 

in hepatoblasts and iHLCs. (D) Representative immunofluorescence images of merosome-like 

structures at D6 post-infection in hepatoblasts and iHLCs. (E) Number of P.y. EEFs at D2 post-

infection in cells infected at various time points (d16, d28, d33) after the start of the 



differentiation process. d16 cells are hepatoblasts, whereas d28 and d33 cells are iHLCs. n = 3 

biological replicates per condition. Data are represented as mean ± SEM. Scale bars = 10 µm. 

 

 

 

Figure S3, Related to Figure 5. Bioluminescent Plasmodium strains are a good proxy of total 

parasite load. Luciferase-expressing P. berghei (P.b.) sporozoites were added to different wells 

of iHLCs from the same batch of differentiation, and the infection was imaged in an IVIS 

bioluminescence (BLI) imaging system at 48h post-infection. A range of BLI values were 

obtained, suggesting a range of infection levels was obtained. The samples were fixed and 

stained for PbHSP70, and the number of P.b. EEFs in each well was counted. In addition the 

sizes of about 50 randomly chosen EEFs in each well were quantified by ImageJ. (A) shows the 

correlation between the number of P.b. EEFs versus the P.b. BLI, whereas (B) shows the 

correlation between the product of the number of P.b. EEFs and the mean EEF diameter versus 

the P.b. BLI. 
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