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ABSTRACT: Analyzing the activity of proteases and their substrates is critical to
defining the biological functions of these enzymes and to designing new diagnostics and
therapeutics that target protease dysregulation in disease. While a wide range of
databases and algorithms have been created to better predict protease cleavage sites,
there is a dearth of computational tools to automate analysis of in vitro and in vivo
protease assays. This necessitates individual researchers to develop their own analytical
pipelines, resulting in a lack of standardization across the field. To facilitate protease
research, here we present Protease Activity Analysis (PAA), a toolkit for the
preprocessing, visualization, machine learning analysis, and querying of protease activity
data sets. PAA leverages a Python-based object-oriented implementation that provides a modular framework for streamlined analysis
across three major components. First, PAA provides a facile framework to query data sets of synthetic peptide substrates and their
cleavage susceptibilities across a diverse set of proteases. To complement the database functionality, PAA also includes tools for the
automated analysis and visualization of user-input enzyme−substrate activity measurements generated through in vitro screens
against synthetic peptide substrates. Finally, PAA supports a set of modular machine learning functions to analyze in vivo protease
activity signatures that are generated by activity-based sensors. Overall, PAA offers the protease community a breadth of
computational tools to streamline research, taking a step toward standardizing data analysis across the field and in chemical biology
and biochemistry at large.

■ INTRODUCTION
Proteases play essential roles in diverse biological processes
ranging from development to differentiation, and dysregulated
protease activity is a driver of a variety of pathological
conditions including cancer, neurodegeneration, and infectious
diseases.1 Because proteases most proximally exert their
function through their activity, understanding protease activity,
rather than transcript or protein expression, is required to
elucidate the biological roles of proteases and to harness these
enzymes as diagnostic and therapeutic targets. To this end,
molecular tools such as activity-based probes (ABPs), short
synthetic peptide substrates, and noninvasive enzyme activity
sensors have been developed to measure protease activities in
vitro, i.e., of recombinant proteases or enzymes present in
biospecimens,2−6 as well as in vivo, i.e., within the disease
microenvironment.7−11 Beyond their use as a discovery tool,
sensors that quantify protease activity are being applied directly
for early detection and monitoring of disease,5,12−18 biological
imaging,7,19 and drug discovery.20,21 Furthermore, proteolytic
cleavage of peptide linkers is being used to trigger disease-
specific activation of engineered activity-based diagnostics11

and therapeutics,22−25 all of which inherently rely on
assessments of protease activity for their design and
optimization. To support the development of these new
activity-based tools and to advance the study of protease

biology at large, a wide range of databases and algorithms have
been created to better identify protease substrates and cleavage
sites, providing a clear demonstration of how protease research
can benefit from computational tools.26−28

Rapidly identifying, designing, and characterizing new
peptide substrates and activity-based sensors remains a major
bottleneck toward advancing these applications. This is due to
the promiscuous nature of protease activity, the combinatorial
number of synthetically accessible substrates, and the dearth of
methods to automate protease activity analysis and substrate
design. Current protease databases and analytic tools also focus
exclusively on endogenous substrates and cleavage sites,29−31

despite the fact that synthetic activity-based sensors and large-
scale libraries of synthetic peptides are now standard tools for
measuring and quantifying protease activity in vivo and in vitro.
Furthermore, the development of these experimental and
molecular methods has not been accompanied by scalable,
modular data analytic workflows. The creation of computa-
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tional packages similar to what exists for genomics (e.g.,
Bioconductor) could enable the standardized analysis of data
generated from both in vitro and in vivo protease-based
experiments. This would greatly benefit researchers by
accelerating experimental workflows, informing diagnostic
and therapeutic design, and facilitating biological insight into
protease dysregulation in disease.

To address these needs, we present Protease Activity
Analysis (PAA), a toolkit that addresses the need for
computational methods to accelerate data analysis of enzyme
activity data in biochemistry, chemical biology, and bioengin-
eering (Figure 1). PAA contains a searchable database of

existing protease activity data, curated from over a decade of
published works from our group, along with modular analytics
that enable users to query these data sets for enzymes or
substrates of interest. Through PAA’s framework, users can
additionally create and search new databases using their own
protease-substrate screening data. PAA enables analytic
standardization via functions that automate the quantification
and visualization of user-input data from in vitro protease
activity screens and in vivo protease-activated nanosensors. The
package is accompanied by step-by-step tutorials that detail the
functionalities provided by PAA in an open-source repository
(https://github.com/apsoleimany/protease_activity_analysis).
PAA’s Python-based implementation provides a modular
framework that is easy to interface with other software
packages and can be readily integrated into broader data
analytic workflows.

■ RESULTS
PAA provides scalable and modular analysis capabilities for
data sets of enzyme activity measurements. Specifically, PAA
supports three core analytic workflows (Figure 1): (1) analysis
and query of databases of peptide substrate sequences and
their cleavage susceptibilities; (2) analysis of substrate screens
using recombinant enzymes or biospecimens; and (3) analysis
of measurements from protease-responsive in vivo nanosensors.

Across all three workflows, PAA provides preprocessing,
visualization, machine learning, and search functionalities.
PAA Supports Searchable Enzyme−Substrate Data-

bases. Identifying and characterizing which substrates are
robustly and specifically cleaved by proteases of interest, such
as those that are overexpressed in a specific cancer, is critical to
discovery and engineering efforts that seek to understand and
exploit protease activity. Indeed, the rapid rise and promise of
engineered conditionally activated diagnostics and therapeu-
tics, which almost universally incorporate a protease-cleavable
peptide linker as the “trigger” for disease-specific activation, has
motivated the need for tools and methods that identify
synthetic peptide substrates that are maximally cleaved in
diseased tissues and/or by target proteases. To this end, in
PAA we present a SubstrateDatabase data structure that
provides a facile framework for curating and querying data
sets of enzyme−substrate activity, which often take the form of
fluorometric assays of proteolytic cleavage of synthetic,
fluorogenic peptide substrates. These assays measure the
kinetics of enzyme activity over time and can be used to assess
both the efficiency of an enzyme for a particular substrate, by
quantifying the initial rate of the reaction, as well as the
specificity of a substrate for a protease, by comparing the
substrate’s cleavage against other proteases screened.

To demonstrate these capabilities, we have created a publicly
available database that incorporates data generated by our
group from six independent recombinant protease screens
against fluorogenic peptide substrates. The database consists of
150 unique synthetic peptide substrates and their cleavage
susceptibilities across a set of 77 distinct recombinant
proteases spanning the metallo, serine, cysteine, and aspartic
catalytic classes. The substrates published as part of PAA were
identified based on the literature and designed to query the
activity of disease-associated proteases, including those in
cancer, infection, and thrombosis. As such, there is an over-
representation of metallo- and serine-sensitive substrates in the
data set, which is open-sourced as a part of PAA (Figure
2B).13,32 However, users can also import their own data into
PAA for individual use, instantiating SubstrateDatabase data
structures that can be readily queried and analyzed.

A guide to the core analytic and visualization functions
related to the database can be found at https://github.com/
apsoleimany/protease_activity_analysis/tree/master/tutorials.
This step-by-step guide showcases how to load and query the
protease-substrate database that is published with this work.
Briefly, to instantiate a SubstrateDatabase, the user inputs raw
data matrices of activity measurements (i.e., n × k where n is
the number of substrates screened, and k is the number of
conditions, e.g., proteases, assayed) for screens to be included
in the database; a file that maps substrate names or labels to
their corresponding sequences; as well as an optional file that
maps amino acids to different colors based on properties of
interest (e.g., hydrophobicity, chemistry, and identity) (Figure
2A). The SubstrateDatabase object first identifies overlapping
substrates or proteases across multiple screens and aggregates
all the data available for each unique substrate and protease
into one simple data structure. In this way, protease-substrate
activity assay data for proteases, substrates, or sequences of
interest can be easily and efficiently queried. For example, if a
user wants to identify potential substrates for a specific
protease, they can input the protease name, and PAA will
output a ranked list of substrates predicted to be efficiently and
specifically cleaved by the protease of interest. The predictive

Figure 1. Overview of Protease Activity Analysis (PAA). The PAA
package is designed to analyze data from large-scale substrate screens,
enzyme activity assays, and in vivo enzyme activity sensors. Key
package capabilities include searchable databases, where users can
both query preloaded protease-substrate data sets published as part of
PAA or import new data sets privately for their own use; data analytics
and visualization functions, for facile and automated analysis of
protease activity data; and machine learning models, for classification
analysis of activity-based sensor data.
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rankings output by PAA strongly align with empirical results
(Figure S1), lending strength to the power of PAA to help
optimize protease activity experiments using in silico methods.
Similarly, given a substrate as the user query, PAA can identify
proteases that have been shown to robustly and/or specifically
cleave that substrate. Note that, for the public data set
published as part of PAA, substrate names correspond to
names assigned by our group for specific sequences. These
names map to existing nomenclature from previously published
works for easy reference.12,13,32

Despite the fact that PAA contains cleavage data for a large
number of substrates, in many cases the user will have a query
sequence of interest that is not already included in the
database. In the absence of an exact match, the SubstrateDa-
tabase can retrieve the top-k substrates most similar to the
query sequence, as quantified by different sequence similarity

metrics. PAA offers two different sequence similarity metrics:
the Levenshtein distance similarity ratio and the partial ratio.
The former is strictly based on the Levenshtein distance that
can be computed as the minimum number of single-character
edits (insertions, deletions, or substitutions) required to
change one amino acid sequence into another. The partial
ratio metric works similarly but instead takes the shortest
sequence and compares it with all substrings of the same
length. This partial ratio is particularly useful when two
substrates contain the same amino acid cleavage motif (e.g.,
“PLG”) but are flanked by different spacers at the N- or C-
terminus (e.g., “GG” or “GS” spacers), as they will still be
assigned high similarity estimates. After calculating the
similarity between the user’s input sequence, PAA returns
the k most similar sequences and the values of the similarity
metrics (Figure 2D).

Figure 2. PAA provides an infrastructure for queryable databases of enzyme substrates. (A) In vitro activity screen summary files, a substrate
sequence file, and an amino acid color map file provide data inputs for a SubstrateDatabase. (B) Sample use of the SubstrateDatabase to query a
database of 150 unique substrate sequences screened against a diverse set of recombinant proteases. Summary plots of number of substrates and
proteases across six independent screens comprising the database. (C) Metrics of sequence diversity include hierarchical clustering of pairwise
sequence similarity scores as well as the ability to search for k-mers of interest. (D) Sample outputs of querying the database for a protease of
interest (e.g., MMP13) and a sequence or cleavage motif of interest (e.g., “GGPLG”).
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Furthermore, the database also incorporates informative
metrics on sequence diversity across substrates (Figure 2C).
Such estimates can be very useful during library optimization
to characterize the degree of redundancy and orthogonality
between substrates in a given peptide library. Alternative

metrics have been recently described by others to achieve
similar goals.33 To this end, PAA incorporates the function
get_similarity_matrix that performs hierarchical clustering of
pairwise similarity scores between all substrate sequences in
the database and affords a compact visualization of sequence

Figure 3. PAA automates analysis of in vitro assays of protease activity. (A) Fluorescence intensity measurements, together with user-defined
specifications such as time points for analysis, are provided as inputs for construction of a KineticDataset . (B) KineticDataset automatically generates
and saves key output activity measurements, such as initial activity rates and fold increases in substrate turnover as a function of time. (C)
Retrospective analysis of 15 lung-cancer-associated proteases screened against a panel of 14 Forster resonance energy transfer (FRET)-paired
substrates,13 with representative plots for MMP13 shown, including line plots of fold change intensity over time for each substrate and a pie chart
summarizing substrate cleavage susceptibility. (D) For the same study,13 comprehensive assessment of cleavage efficiency and specificity across
recombinant proteases and substrates. (i) Fluorescence fold changes were subject to hierarchical clustering to cluster proteases (vertical) by their
substrate specificities and substrates (horizontal) by their protease specificities. (ii) Specificity versus efficiency (SvE) plots compare standard
scores across substrates (efficiency; x-axis) against standard scores across proteases (specificity; y-axis). SvE analysis for the protease MMP13 shows
promiscuous activity across substrates (top). SvE analysis for the substrate S79 highlights that it is specifically cleaved by MMP13 relative to other
proteases assayed (bottom). (iii) Pairwise correlation analysis of initial rates across all substrates for recombinant proteases in the screen, measured
as the Spearman rank correlation coefficient. Heatmap identifies the highest correlation of substrate cleavage between MMP1 and MMP12, among
all proteases in the analyzed data set.13
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diversity. In addition, the search_kmer function allows the user
to readily find all substrates in the data set that contain a given
k-mer motif of interest, such as the metalloprotease cleavage
motif “PLGL” (Figure 2C). By integrating data from both of
these analyses, PAA can help guide library optimization by
allowing the user to make inferences about clusters of
substrates that may have similar protease cleavage susceptibil-
ities based on similarity scores and known cleavage motifs.
Additionally, PAA can identify substrates that rank most
distinct from others in the library and thus may be favored or
disfavored based on the application at hand.

All recombinant proteases included in the database are of
human origin. However, because overlapping cleavage sites
have been identified between protease orthologs,34 we
anticipate that the human sequences in the database will
prove useful to researchers studying proteases in model
organisms. To enable users to search for orthologous protease
genes across species, PAA includes a function, species_to_spe-
cies, that builds off of the comprehensive “Mammalian
Degradome Database”35 to facilitate mapping of genes across
species of interest (human, chimpanzee, mouse, and rat). For
instance, the function will map the human protease “MMP9” to
its mouse ortholog “Mmp9” while alerting the user that human
“GZMH” does not have a mouse ortholog.36 Furthermore,
while PAA features data from our group published as a
resource and example for the SubstrateDatabase data structure,
users can use PAA as a local package to analyze their own data
sets, which will keep all data private to the user. Then, users
can implement PAA’s functionalities and modular methods to
analyze their private or internally generated data sets, as well as
other data sets of interest.
PAA Provides Modular Methods to Analyze In Vitro

Substrate Screens. As highlighted by the rich information
that could be harnessed from PAA’s public data set of
protease−substrate activity measurements (Figure 2), in vitro
enzyme activity assays are vital to characterizing protease
activities and their dysregulation in disease.1,10,37 Despite the
broad prevalence of these assays throughout the protease
biology and chemical biology communities, as well as the
consideration that such assays will only become larger in size as
high-throughput screening becomes more common, data
analysis remains, to the best of our knowledge, largely manual.
There is a dearth of computational tools to automate the
analysis and visualization of enzyme activity data sets. PAA
introduces a way to represent, store, and analyze these data sets
automatically through the KineticDataset data object, which
contains a suite of functions for rapidly preprocessing,
visualizing, and analyzing these data (Figure 3).

The KineticDataset class is equipped to take in raw data files
from enzyme activity assays (e.g., cleavage of fluorogenic
substrates) generated directly by measurement instruments
(e.g., fluorimeters; Figure 3A, Figure S2). Raw files consist of
matrices of activity measurements for each sample to be
analyzed (i.e., n × t, where n is the number of substrates
screened and t is the number of time points recorded). The
class automatically generates key output activity measure-
ments, including initial rates (intensity/min−1) and fold
changes at user-defined time points across substrates (Figure
3B). The resulting measurements can then be visualized with
line plots that depict changes in raw fluorescence intensity and
fold change intensity over time for each substrate (Figure 3C).
Furthermore, users can define the catalytic class of each
screened protease (e.g., metallo- versus serine-), to visualize

the cleavage susceptibilities of their substrates by different
protease classes (Figure 3C). This may prove useful if a certain
protease class is known to be associated with a particular
disease state, such as metalloproteases and cancer.

PAA also supports inputs from retrospective screens, for
which a matrix summarizing cleavage efficiencies across a set of
samples may have already been produced (Figure 3A). Based
on these summary matrices, PAA can be used to cluster
samples (e.g., recombinant enzymes, cell, or tissue lysates) of
interest based on their activity patterns; to identify substrates
that are cleaved with increased specificity by a given sample;
and to examine correlations in cleavage patterns across
screened samples (Figure 3D). In particular, specificity versus
efficiency analyses (“SvE” plots) enable identification of
optimal protease−substrate pairs from in vitro activity assays
(Figure 3D). SvE plots are generated by calculating z-scores
across the screened substrates, which serve as a surrogate
metric for cleavage efficiency, and z-scores across the screened
proteases, which serve as a surrogate metric for specificity. By
plotting these metrics against each other, optimal substrate−
protease pairs can be rapidly identified from large sets of
screening data by identifying substrates that score high for
both of these metrics (Figure 3D).18 In addition, annotation by
the raw activity measurement values for each protease−
substrate pair reflects the absolute cleavage rate of a substrate
of interest and overcomes the relative nature of standard
scoring. Altogether, these analyses enable rapid assessment of
substrate cleavage efficiency and specificity as well as robust
identification of differential or overlapping activity signatures
across different enzymes or tissue types (Figure 3D).

A step-by-step tutorial of the core data input, processing,
visualization, and analytic functions can be found at https://
github.com/apsoleimany/protease_activity_analysis/tree/
master/tutorials. The demonstrations and the results presented
in Figure 3 feature a retrospective analysis of a previously
reported in vitro screen of a panel of lung-cancer-associated
proteases against a panel of 14 peptide substrates13 (Figure 3).
We showcase the modularity of these functionalities through
analysis of a second independent in vitro protease screen from
the literature33 (Figure S2), demonstrating that PAA extends
to data sets from different experimental setups and research
groups.

Together, KineticDataset and the visualization functionality
provided by PAA streamline the aggregation, visualization, and
analysis of in vitro activity measurements. In particular, these
analyses facilitate the assessment of cleavage efficiency and
specificity as well as the identification of differential and
overlapping activity signatures among different enzymes or
tissue types.
PAA Enables Machine Learning Analysis of In Vivo

Activity Data. Because proteases play critical functional roles
in a variety of disease processes, recent years have seen the
emergence of new classes of activity-based diagnostics that are
engineered to measure the activity of endogenous enzymes at
the site of disease and to generate an output signal that can be
read out externally.11,38 To this end, our group has developed
activity-based nanosensors, probes that detect the activity of
aberrant proteases within the body and generate exogenous
urinary reporters that reflect the degree of proteolytic cleavage
encountered in vivo.12−14,16,18,39−43 These nanosensors consist
of an inert scaffold whose surface is decorated with peptide
substrates, designed to be cleaved by proteases dysregulated in
the disease state of interest. Each substrate is marked with a
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mass-encoded peptide barcode, which is released upon
interaction of the nanosensor with target proteases and then
concentrated in the urine. Upon collection of urine, the relative
concentrations of each reporter are quantified using mass
spectrometry. Multiple sensors can be multiplexed simulta-
neously by barcoding each unique peptide substrate with a
different mass-encoded peptide reporter.5,12−14,18,16,32 This
multiplexing generates n × k matrices of urinary reporter
measurements, where n is the number of samples and k is the
number of sensors/reporters. The reporters serve as input
features, and thusPAA automates data analysis of these input
matrices and enables training of downstream machine learning
classifiers.

Considering the flexibility afforded by this approach, we
implemented a modular data framework, SyneosDataset for
analysis and machine learning on these mass-barcoded reporter
measurements. Our framework provides a variety of
capabilities directly tied to biological, diagnostic, and analytic
questions of interest. These capabilities include differential
enrichment analysis of reporters between conditions (i.e.,
identifying which reporters are associated with disease versus

healthy states); unsupervised dimensionality reduction; binary
and multiclass classification; feature, sample, and data
specification for all analyses; recursive feature elimination;
and associated visualizations. To demonstrate these capabil-
ities, we created a step-by-step guide, published as an
implementation tutorial, that details input data requirements,
analytic functions, and visualization options. This guide
recapitulates the findings of previously published work
demonstrating the noninvasive detection of localized lung
cancer in mice using a 14-plex activity-based nanosensor
panel.13 For the original study, the authors analyzed the in vivo
data using unique scripts created specifically for their analysis.
In our demonstration, we show how the same raw data can be
parsed, analyzed, and visualized using the modular functions
available in PAA (Figure 4). We developed modular machine
learning functions that enabled the creation of additional
diagnostic classifiers (Figure 4), thus demonstrating how PAA
can be used to derive new insights from existing data.

Briefly, in the original study, a 14-plex nanosensor panel was
administered into a mouse model of lung adenocarcinoma at 5,
7.5, and 10.5 weeks after tumor initiation and in parallel

Figure 4. PAA enables automated machine learning analysis of in vivo activity data from activity-based nanosensors. (A) In a previously published
study, activity-based nanosensors were administered at three different time points after tumor initiation in a mouse model of lung
adenocarcinoma.13 Dysregulated protease activity in the cancerous lungs triggered the release of mass-encoded reporters into the urine. The urinary
reporter concentrations were measured with mass spectrometry. PAA enables analysis, visualization, and machine learning on these data. (B,C)
PAA automates analysis to visualize differences in reporter enrichment among conditions, such as different sample classes, e.g., wild-type control
(Control) and lung cancer (KP) mice, and time points, e.g., 5 and 7.5 weeks after tumor initiation in KP mice. (B) Principal component analysis
(PCA) can reduce the dimensionality of the feature space to discover differential activity signatures across conditions. (C) Volcano plots identify
nanosensors driving these signatures, by comparing the fold change in reporter concentrations between two classes (x-axis) against their statistical
significance (−log10(Padj); y-axis). (D) PAA evaluates the diagnostic potential of these activity signatures through automated training, validation,
and testing of machine learning models, for example on the classification of healthy control and KP lung cancer mice. (E) Multiclass classifiers can
also be trained, tested, and visualized using PAA.
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healthy controls (Figure 4A). After collecting the urine from
each mouse, the urinary reporter concentrations were
quantified using mass spectrometry. In the original study, the
authors sought to determine the earliest stage at which the
nanosensor panel could detect lung cancer. PAA streamlined
normalization, statistical analysis, and machine learning of the
nanosensor data into a single computational pipeline. We used
this pipeline to verify that PAA’s modular workflow could
recapitulate the original findings. PAA automated dimension-
ality reduction, specifically principal component analysis
(PCA), to compare the urinary signals from each disease
state across the tested time points (Figure 4B), and differential
enrichment analysis to identify significant reporters (Figure
4C). In the example, one PCA plot (5 weeks after tumor
initiation) shows an overlap between the two conditions,
reflected in the volcano plot without any reporters being
significantly differentially enriched (Figure 4B). In contrast, the
PCA plot showing separation between clusters (7.5 weeks after
tumor initiation) corresponds to differentially enriched
reporters that drive the separation between groups, as reflected
in the corresponding volcano plot (Figure 4C). With PAA, all
graphs can be generated using a single function call in one line
of code, making such analyses easily accessible, automated, and
standardized.

The reporter concentrations can then be used to train binary
and multiclass machine learning classifiers that can be used to
diagnose disease (Figure 4D,E). PAA is capable of performing
classification using a variety of algorithms, including support
vector machines, random forests, and linear regression. This
allows the user to benchmark methods rigorously and
determine the best statistical learning method for their data.
The user can also specify which sets of reporters, class labels,
or individual labels should be used to train and test the
classifiers. In the demonstration, we have shown that the
reporter concentrations collected 5 weeks after tumor initiation
are unable to yield a learned representation indicative of lung
cancer, whereas by 7.5 weeks, the activity-based nanosensors
generate an activity dataset that can be used to accurately
diagnose lung cancer (Figure 4D,E). More generally, PAA
provides a modular, streamlined data analytic workflow for
measurements from in vivo protease nanosensors and can
readily be applied to new data sets for automated statistical and
machine learning analysis.

■ DISCUSSION
PAA advances computational methods to accelerate data
analysis in biochemistry, chemical biology, and bioengineering.
PAA represents a toolkit for users to automate the analysis of
protease activity measurements generated in vitro through
substrate screens or in vivo through noninvasive enzyme
activity sensors. Here, we focus on the analysis of screens
against synthetic, fluorescent-quenched peptide substrates (for
the former) and of urinary reporter measurements from
activity-based nanosensors (for the latter).

However, the modular methods and concepts presented in
PAA readily extend to other data sets, particularly in terms of
the tools for analysis of substrate screening data, as shown in
Figure S2. Additional analytic functions for protease−substrate
screening data, such as modeling time to cleavage saturation,
prediction of competitive interactions between pairs of
peptides,44 deconvolution of signals from mixtures of
proteases,45 and identification of optimal substrate sets using
principles from information theory,33 will expand PAA’s

abilities to automate optimal enzyme substrate selection and
design. Future work could extend PAA’s machine learning
capabilities to include neural network models for classification
analysis,46 methods for assessment of distribution shift and
data set bias,47−49 as well as approaches for quantification of
predictive confidence.50−55

Not only does PAA contain valuable analysis tools, but it
also includes a publicly available database of 150 unique
synthetic peptides and their cleavage susceptibilities across a
set of 77 distinct recombinant proteases, together with an
interface to query this database for proteases, substrates, or
sequences of interest. PAA’s database can be readily expanded
through publication and addition of new protease data, for
example through high-throughput screening efforts that expand
its coverage to additional enzymes. Users can use PAA as a
local package to upload and analyze their own data sets,
keeping all data private and leveraging PAA’s functionalities to
query and analyze their data. PAA's modular database
functionality and public dataset could be of great interest in
the context of nomination of protease-cleavable peptide
linkers, for example for protease-activated diagnostics and
therapeutics. By focusing on synthetic substrates that directly
measure protease activity and providing modular data science
functionalities through an accessible software package, PAA’s
database and analytic capabilities directly complement existing
tools for assessing protease cleavage patterns.29−31,45 Being
implemented and released as a Python package, PAA can be
further developed and integrated into larger data analytic
workflows. We envision that PAA will accelerate analysis
workflows for biologists, biochemists, and engineers interested
in understanding and leveraging protease activity to better
understand, detect, and treat disease.

■ METHODS
PAA’s core relies on NumPy, SciPy, Matplotlib, pandas, seaborn,
and scikit-learn. The Python-based implementation allows for
flexible use, easy interfacing to machine learning and data
analytic packages, and object-oriented programming. PAA's
open-source code is available at https://github.com/
apsoleimany/protease_activity_analysis and is published
under the MIT license. PAA is organized and built as a
package for ease of use and to facilitate developer integration.

The demonstrations described in this work are stored as
Jupyter notebooks available in the PAA repository. These
include: (1) querying and analysis of protease−substrate
databases; (2) analysis and aggregation of in vitro screens of
recombinant proteases and tissue lysates against synthetic
peptide substrates; and (3) analysis and machine learning
classification of urinary reporter signatures from in vivo activity-
based nanosensors. The data sets used in these demonstrations
were generated by our research group and are published
together with PAA.

All code was written in the Python programming language.
The PAA package is compatible with Mac OS, Windows, and
Linux operating systems.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
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(35) Pérez-Silva, J. G.; Español, Y.; Velasco, G.; Quesada, V. The

Degradome database: expanding roles of mammalian proteases in life
and disease. Nucleic Acids Res. 2016, 44, D351−D355.
(36) Trapani, J. A. Granzymes: a family of lymphocyte granule serine

proteases. Genome Biol. 2001, 2, 1−7.
(37) Dudani, J. S.; Warren, A. D.; Bhatia, S. N. Harnessing protease

activity to improve cancer care. Annu. Rev. Cancer Biol. 2018, 2, 353−
376.
(38) Kwong, G. A.; Ghosh, S.; Gamboa, L.; Patriotis, C.; Srivastava,

S.; Bhatia, S. N. Synthetic biomarkers: a twenty-first century path to
early cancer detection. Nat. Rev. Cancer 2021, 1−14.
(39) Warren, A. D.; Kwong, G. A.; Wood, D. K.; Lin, K. Y.; Bhatia,

S. N. Point-of-care diagnostics for noncommunicable diseases using
synthetic urinary biomarkers and paper microfluidics. Proc. Natl. Acad.
Sci. U. S. A. 2014, 111, 3671−3676.
(40) Kwon, E. J.; Dudani, J. S.; Bhatia, S. N. Ultrasensitive tumour-

penetrating nanosensors of protease activity. Nat. Biomed. Eng. 2017,
1, 1−10.
(41) Loynachan, C. N.; Soleimany, A. P.; Dudani, J. S.; Lin, Y.;

Najer, A.; Bekdemir, A.; Chen, Q.; Bhatia, S. N.; Stevens, M. M. Renal
clearable catalytic gold nanoclusters for in vivo disease monitoring.
Nat. Nanotechnol. 2019, 14, 883−890.
(42) Mac, Q. D.; Mathews, D. V.; Kahla, J. A.; Stoffers, C. M.;

Delmas, O. M.; Holt, B. A.; Adams, A. B.; Kwong, G. A. Non-invasive
early detection of acute transplant rejection via nanosensors of
granzyme B activity. Nat. Biomed. Eng. 2019, 3, 281−291.
(43) He, J.; Nissim, L.; Soleimany, A. P.; Binder-Nissim, A.;

Fleming, H. E.; Lu, T. K.; Bhatia, S. N. Synthetic Circuit-Driven
Expression of Heterologous Enzymes for Disease Detection. ACS
Synth. Biol. 2021, 10, 2231−2242.
(44) Leung, D.; Abbenante, G.; Fairlie, D. P. Protease inhibitors:

current status and future prospects. J. Med. Chem. 2000, 43, 305−341.
(45) Miller, M. A.; Barkal, L.; Jeng, K.; Herrlich, A.; Moss, M.;

Griffith, L. G.; Lauffenburger, D. A. Proteolytic Activity Matrix
Analysis (PrAMA) for simultaneous determination of multiple
protease activities. Integr. Biol. 2011, 3, 422−438.
(46) LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015,
521, 436−444.
(47) Lipton, Z.; Wang, Y.-X.; Smola, A. Detecting and correcting for

label shift with black box predictors. International Conference on
Machine Learning 2018, 3122−3130.
(48) Amini, A.; Soleimany, A. P.; Schwarting, W.; Bhatia, S. N.; Rus,

D. Uncovering and mitigating algorithmic bias through learned latent
structure. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society 2019, 289−295.
(49) Koh, P. W.; et al. Wilds: A benchmark of in-the-wild

distribution shifts. International Conference on Machine Learning
2021, 5637−5664.
(50) Gal, Y.; Ghahramani, Z. Dropout as a Bayesian approximation:

Representing model uncertainty in deep learning. International
Conference on Machine Learning 2016, 1050−1059.
(51) Lakshminarayanan, B.; Pritzel, A.; Blundell, C. Simple and

scalable predictive uncertainty estimation using deep ensembles.
Advances in Neural Information Processing Systems 2017, 30, 6405−
6416.
(52) Amini, A.; Schwarting, W.; Soleimany, A.; Rus, D. Deep

evidential regression. Advances in Neural Information Processing
Systems 2020, 33, 14927−14937.
(53) Hie, B.; Bryson, B. D.; Berger, B. Leveraging uncertainty in

machine learning accelerates biological discovery and design. Cell Syst
2020, 11, 461−477.
(54) Soleimany, A. P.; Amini, A.; Goldman, S.; Rus, D.; Bhatia, S.

N.; Coley, C. W. Evidential deep learning for guided molecular

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01559
ACS Omega 2022, 7, 24292−24301

24300

https://doi.org/10.1126/scitranslmed.abe8939
https://doi.org/10.1002/adhm.202102685
https://doi.org/10.1002/adhm.202102685
https://doi.org/10.1073/pnas.2121778119
https://doi.org/10.1073/pnas.2121778119
https://doi.org/10.1038/s41551-020-00616-6
https://doi.org/10.1038/s41551-020-00616-6
https://doi.org/10.1038/nbt.1531
https://doi.org/10.1038/nbt.1531
https://doi.org/10.1038/s41589-020-00689-z
https://doi.org/10.1038/s41589-020-00689-z
https://doi.org/10.1126/scitranslmed.3006682
https://doi.org/10.1126/scitranslmed.3006682
https://doi.org/10.1126/scitranslmed.3006682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/scitranslmed.3006682?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/14712598.2020.1699053
https://doi.org/10.1038/s41587-019-0135-x
https://doi.org/10.1038/s41587-019-0135-x
https://doi.org/10.1038/s41587-019-0404-8
https://doi.org/10.1038/s41587-019-0404-8
https://doi.org/10.1016/j.gpb.2019.08.002
https://doi.org/10.1016/j.gpb.2019.08.002
https://doi.org/10.1016/j.gpb.2019.08.002
https://doi.org/10.1093/bib/bby028
https://doi.org/10.1093/bib/bby028
https://doi.org/10.1093/bib/bby077
https://doi.org/10.1093/bib/bby077
https://doi.org/10.1093/bib/bby077
https://doi.org/10.1093/nar/gkv1118
https://doi.org/10.1093/nar/gkv1118
https://doi.org/10.1093/nar/gkv1118
https://doi.org/10.1093/nar/gku1012
https://doi.org/10.1093/nar/gku1012
https://doi.org/10.1093/nar/gku1012
https://doi.org/10.1021/acs.analchem.1c04937?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.1c04937?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.1c04937?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1805337115
https://doi.org/10.1073/pnas.1805337115
https://doi.org/10.1101/2022.01.04.474983
https://doi.org/10.1101/2022.01.04.474983
https://doi.org/10.1101/2022.01.04.474983?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1101/2022.01.04.474983?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nrg1111
https://doi.org/10.1093/nar/gkv1201
https://doi.org/10.1093/nar/gkv1201
https://doi.org/10.1093/nar/gkv1201
https://doi.org/10.1186/gb-2001-2-12-reviews3014
https://doi.org/10.1186/gb-2001-2-12-reviews3014
https://doi.org/10.1146/annurev-cancerbio-030617-050549
https://doi.org/10.1146/annurev-cancerbio-030617-050549
https://doi.org/10.1073/pnas.1314651111
https://doi.org/10.1073/pnas.1314651111
https://doi.org/10.1038/s41551-017-0054
https://doi.org/10.1038/s41551-017-0054
https://doi.org/10.1038/s41565-019-0527-6
https://doi.org/10.1038/s41565-019-0527-6
https://doi.org/10.1038/s41551-019-0358-7
https://doi.org/10.1038/s41551-019-0358-7
https://doi.org/10.1038/s41551-019-0358-7
https://doi.org/10.1021/acssynbio.1c00133?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.1c00133?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm990412m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm990412m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C0IB00083C
https://doi.org/10.1039/C0IB00083C
https://doi.org/10.1039/C0IB00083C
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.cels.2020.09.007
https://doi.org/10.1016/j.cels.2020.09.007
https://doi.org/10.1021/acscentsci.1c00546?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01559?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


property prediction and discovery. ACS Cent. Sci. 2021, 7, 1356−
1367.
(55) Kompa, B.; Snoek, J.; Beam, A. L. Second opinion needed:

communicating uncertainty in medical machine learning. NPJ. Digit.
Med. 2021, 4, 1−6.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c01559
ACS Omega 2022, 7, 24292−24301

24301

 Recommended by ACS

Efficient Exploration of Sequence Space by Sequence-
Guided Protein Engineering and Design
Ben E. Clifton, Paola Laurino, et al.
MARCH 04, 2022
BIOCHEMISTRY READ 

TopModel: Template-Based Protein Structure
Prediction at Low Sequence Identity Using Top-Down
Consensus and Deep Neural Networks
Daniel Mulnaes, Holger Gohlke, et al.
JANUARY 22, 2020
JOURNAL OF CHEMICAL THEORY AND COMPUTATION READ 

FingerprintContacts: Predicting Alternative
Conformations of Proteins from Coevolution
Jiangyan Feng and Diwakar Shukla
APRIL 13, 2020
THE JOURNAL OF PHYSICAL CHEMISTRY B READ 

Convolution Neural Network-Based Prediction of
Protein Thermostability
Xingrong Fang, Li Xu, et al.
OCTOBER 28, 2019
JOURNAL OF CHEMICAL INFORMATION AND MODELING READ 

Get More Suggestions >

https://doi.org/10.1021/acscentsci.1c00546?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41746-020-00367-3
https://doi.org/10.1038/s41746-020-00367-3
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c01559?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.biochem.1c00757?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.biochem.1c00757?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.biochem.1c00757?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.biochem.1c00757?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jctc.9b00825?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jpcb.9b11869?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jpcb.9b11869?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jpcb.9b11869?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jpcb.9b11869?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jcim.9b00220?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jcim.9b00220?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jcim.9b00220?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
http://pubs.acs.org/doi/10.1021/acs.jcim.9b00220?utm_campaign=RRCC_acsodf&utm_source=RRCC&utm_medium=pdf_stamp&originated=1660582509&referrer_DOI=10.1021%2Facsomega.2c01559
https://preferences.acs.org/ai_alert?follow=1

