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CRISPR/Cas9 cleavage of viral DNA 
efficiently suppresses hepatitis B 
virus
Vyas Ramanan1,*, Amir Shlomai2,*,#, David B.T. Cox1,6,9,*, Robert E. Schwartz1,3,4, 
Eleftherios Michailidis2, Ankit Bhatta2, David A. Scott6,11, Feng Zhang1,6,10,11, 
Charles M. Rice2 & Sangeeta N. Bhatia1,3,5,6,7,8

Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the 
persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering 
tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we 
show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV 
genome, resulting in robust suppression of viral gene expression and replication. Upon sustained 
expression of Cas9 and appropriately chosen guide RNAs, we demonstrate cleavage of cccDNA by 
Cas9 and a dramatic reduction in both cccDNA and other parameters of viral gene expression and 
replication. Thus, we show that directly targeting viral episomal DNA is a novel therapeutic approach 
to control the virus and possibly cure patients.

Hepatitis B virus (HBV) chronically infects over 250 million people worldwide. Chronically infected 
individuals are at an increased risk for deadly complications, including cirrhosis, end-stage liver disease 
and hepatocellular carcinoma, resulting in approximately 600,000 deaths per year1. HBV is a member 
of the Hepadnaviridae family and its life cycle involves both DNA and RNA intermediates. The HBV 
genome exists in the nuclei of infected hepatocytes as a 3.2kb double-stranded episomal DNA species 
called covalently closed circular DNA (cccDNA). cccDNA is a key component in the HBV life cycle, 
since it is the template for all viral genomic and subgenomic transcripts2. Currently approved HBV ther-
apies act post-transcriptionally to inhibit viral replication and thus fail to target or eliminate the cccDNA 
pool, which exhibits extraordinary stability and persistence3. Consequently, these drugs must often be 
taken indefinitely to prevent viral rebound. Agents that act directly on viral DNA to deplete this reservoir 
may represent more desirable and possibly curative therapeutic alternatives4.

To this end, targeted nucleases may provide an efficient and specific way to damage the HBV genome 
while sparing host genomic DNA5–7. Targeted nucleases catalyze double-stranded DNA break (DSB) 
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formation, which leads to the formation of mutagenic insertions and deletions (indels) through error-prone 
nonhomologous end-joining (NHEJ) at the target DNA locus. Recently, the type II CRISPR-Cas system 
of Streptococcus pyogenes SF370 has been adapted as an RNA-guided, sequence-specific DNA nucle-
ase for use in mammalian cells8,9. CRISPR/Cas9 and other genome engineering technologies have been 
employed to design candidate therapeutics via gene targeting, knockout of beneficial host genes, and 
mutation of integrated viruses10, and we sought to further study the application of CRISPR/Cas9 to direct 
targeting and cleavage of HBV cccDNA. We hypothesized that by directly targeting the HBV genome 
for cleavage using CRISPR/Cas9, we could suppress HBV by mutagenizing critical genomic elements or 
decreasing the stability of cccDNA and other viral intermediates through repeated linearization of the 
circular genomes (Fig. 1a).

Results
CRISPR/Cas9 design and validation. Using the CRISPR online design tool (http://www.
genome-engineering.org/crispr/), we generated 24 single guide RNAs (sgRNAs) targeting the HBV 
genome (Fig.  1b, Table S1). Target sequences were chosen in order to maximize conservation across 
viral genotypes (Fig S1) and minimize homology to the human genome. Based on these criteria, we 
only designed guides targeting the core, polymerase and X ORFs, but numerous Cas9 target sites also 
exist in the S ORF (Fig. 1b). To evaluate the efficacy of selected sgRNAs (Fig. 1b) in targeting HBV, we 
co-transfected the HepG2 hepatoma cell line with an HBV-expressing plasmid and constructs expressing 
Cas9 and individual gRNAs, and measured the production of HBV 3.5kb RNA (encoding pre-genomic 
RNA (pgRNA), the template for reverse transcription) as well as the secretion of HBV surface antigen 
(HBsAg) into the medium, two reliable indicators for viral gene expression and replication (Fig.  1c). 
sgRNAs 17 and 21 (sg17 and sg21) consistently led to a decrease in pgRNA levels and HBsAg produc-
tion (Fig. 1d,e). While other sgRNAs (sg14 and sg19) generated similar decreases in HBV pgRNA, these 
guides did not have as large an effect on HBsAg secretion as did sg17 and sg21. This source of this dis-
crepancy is not entirely clear, but may be related to targeting different locations along the HBV genome 
that exert effects on pgRNA transcription but do not suppress HBsAg expression.

Given their strong effect on both viral parameters measured, we proceeded with sg17 and sg21, as 
well as sg6 - identified from previous pilot experiments. In addition, to investigate the effect of multiplex 
targeting of HBV DNA in order to impact multiple viral elements, we co-transfected HepG2 cells with 
control sgRNA, sg17, sg21, or a combination of sg17/sg21. The combination of two guide RNAs targeting 
HBV led to stronger reductions in HBsAg and HBV 3.5kb RNA as compared to the single guide RNAs 
(Fig S2).

Confirmation of anti-HBV effect in vivo. We next sought to evaluate the antiviral effect of Cas9 
in vivo, to ensure that our anti-HBV constructs functioned appropriately in primary hepatocytes. To 
do this, we used a mouse model of HBV, where HBV and Cas9/sgRNA plasmids were introduced to 
the liver of immunodeficient mice (NRG) by hydrodynamic injection (HDI)11 (Fig.  1f). In the case of 
proof-of-concept studies such as this, we endeavor to minimize the use of animal subjects. Thus, the 
complete battery of in vivo experiments described below were performed with only sg21 and its mutated 
control, although similar results were replicated with other guides (data not shown). Animals expressing 
Cas9 and sg21 in this model showed a progressive suppression of HBV expression as compared to con-
trols expressing Cas9 and a mutated sgRNA (sg21M; 3’ 5 bp mismatch), reflected by a decrease in HBsAg 
secretion and a 4-fold decrease in viremia at day 4 post injection (Fig. 1g,h).

Sustained Cas9/sgRNA expression dramatically inhibits HBV. Recent genome-wide CRISPR 
knockout studies have shown that sustained Cas9/sgRNA expression induces progressively greater indel 
formation over time in mammalian cells12. Based on this information and encouraged by our initial 
results, we evaluated the efficacy of sustained Cas9/sgRNA expression in inhibiting HBV using a model 
that more reliably recapitulates HBV life cycle components. For these studies, we used the HepG2.2.15 
hepatoblastoma cell line, which harbors both a functional HBV integrated form and cccDNA, and 
constitutively produces infectious virions13 (Fig S3). Because cccDNA cannot be reliably quantified or 
detected in plasmid co-transfection or HDI systems, the HepG2.2.15 system is more ideal for investigat-
ing CRISPR/Cas9-mediated clearance of this viral species.

We transduced HepG2.2.15 cells with Cas9-2A-Puro lentiviruses encoding Cas9 and individual sgR-
NAs (sg6, sg17, sg21) chosen based on our initial results, and treated cells with puromycin to select for 
transduced cells (Fig.  2a). As controls, cells were also transduced with constructs containing sgRNAs 
and a nuclease deficient Cas9 (D10A/H840A; dCas9) to control for nuclease-independent effects of Cas9 
on viral fitness, or WT Cas9 with mutated sgRNAs (gXM) to control for guide sequence-independent 
effects. Cas9/sgRNAs induced robust suppression of HBV DNA release (77-95% decrease across different 
sgRNAs), HBeAg secretion, and viral mRNA production (greater than 50%) (Fig S4). We next analyzed 
the effect of Cas9-mediated cleavage on the abundance of non-integrated viral forms, composed mainly 
of cccDNA (See Methods). Quantitative PCR showed a robust reduction in total HBV DNA and in 
cccDNA. Pooling the data from sg6, sg17, and sg21, cccDNA reduction progressed from 71 +  /− 7% 
reduction at day 21 to 92 +  /− 4% at day 36 post transduction (Fig. 2b,c, data for individual sgRNAs in 
Fig S5). These results were confirmed by directly analyzing low molecular weight DNA from transduced 
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cells by Southern blot (Fig. 2d). cccDNA and its deproteinated relaxed circular form (dpRC DNA) pre-
cursor were greatly depleted in Cas9/sgRNA transduced cells. In contrast, when total HBV DNA was 
analyzed, no substantial reduction in the levels of integrated HBV DNA was detected (Fig S6).

We then performed the Surveyor assay on HBV, to directly determine whether the viral DNA was 
cleaved and repaired via error-prone NHEJ similar to genomic targets of CRISPR/Cas9. Interestingly, 
analysis of total HBV DNA forms for indel formation, an indirect measure of Cas9-mediated cleavage, 

Figure 1. Transiently transfected CRISPR constructs exhibit anti-HBV activity. (a) Schematic of HBV life 
cycle and putative anti-HBV effect of CRISPR constructs; Cas9-mediated DSB formation should linearize 
the small, episomal cccDNA repeatedly, potentially leading to indel formation (generating less-fit viral 
mutants) or even degradation. (b) (left) HBV genome organization and location of target sequences for 
several tested guide RNA constructs. (right) Table of all possible CRISPR target sites in each HBV ORF, 
including number of possible target sites in conserved genomic regions. (c) Experimental schematic for (d-
e): HepG2 cells are co-transfected with 1.3x WT HBV and sgRNA/Cas9-2A-mCherry construct, and (d) 
intracellular HBV pregenomic RNA and (e) secreted HBsAg are quantified after 72 hours. Data shown were 
generated in one representative experiment, with intracellular pgRNA harvested from one pellet and HBsAg 
collected from replicate wells per group; all data are consistent across three independent experiments. (f) 
Experimental schematic for (g-h): 1.3x WT HBV and sgRNA/Cas9-2A-mCherry are delivered to the livers 
of immunodeficient NRG mice via hydrodynamic injection, and (g) HBsAg and (h) secreted HBV titer 
are quantified in mouse blood at 2 and 4 days post injection. 21M: guide RNA with 5 bp mismatch from 
g21. Data shown are from one representative experiment, and consistent across multiple experiments. UT: 
‘untargeted’ guide RNA (no target sequence in HBV genome). *p <  0.05 for selected comparison; **p <  0.01 
for selected comparison; ***p <  0.001 for selected comparison as assessed by two-tailed t-test.
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revealed a substantial mutagenesis rate (Fig. 2e top). When we performed the same analysis after deplet-
ing integrated genomic HBV, we observed a lower rate of indel formation (0% vs 32%, 62% vs 88% 
and 21% vs 66% for guides sg21, sg17 and sg6, respectively) (Fig.  2e bottom). Notably, however, this 
analysis method cannot detect Cas9-mediated cleavage of cccDNA followed by exonuclease-mediated 
degradation from the newly-formed free DNA ends (instead of re-ligation by NHEJ), and may be limited 

Figure 2. Sustained expression of CRISPR machinery enables large reductions in HBV DNA and 
cccDNA. (a) Schematic of lentiviral vector and experimental strategy for sustained CRISPR expression. (b-
c) CRISPR constructs targeting HBV cause progressive reduction in (b) cccDNA and (c) total HBV DNA 
levels dependent on successful targeting of viral DNA and Cas9 nuclease activity; data shown are from one 
representative experiment pooled across 3 separate HBV-targeting guides (sg6, sg17, sg21), and consistent 
across multiple independent transduction experiments. (d) Southern blot of HBV DNA forms using Hirt’s 
extraction (to deplete high-molecular weight DNA), shows HBV-targeted sgRNAs with nuclease-active 
Cas9 generate near-total reduction in cccDNA. (e) Surveyor assay to detect indel formation in total HBV 
DNA (top) and episomal HBV DNA, enriched by treatment with plasmid-safe DNase (bottom); lentiviral 
transduction enables high levels of cutting of HBV. Arrowheads depict surveyor digestion products. 
Expected PCR product sizes for sg6, sg17 and sg21 are respectively 599, 946 and 507 bp. Approximate sizes 
of surveyor digestion products for sg6, sg17 and sg21 are respectively: 429 +  170, 570 +  376, 275 +  232. 
(f) Immunofluorescent imaging of HBV Core protein demonstrates large reduction in Core staining upon 
targeting by sg17 specifically against the Core ORF. (g-h) Cas9/gRNA-transduced Hep-NTCP cells are 
cocultured with HepG2.2.15 cells to infect them with HBV followed by depletion of HepG2.2.15 cells using 
puromycin selection (Schematic in Fig S6 left). (g) From left to right, HBsAg secretion, cccDNA copies, 
levels of HBV 3.5kb RNA relative to 5 bp mismatch control, and titer of HBV DNA in culture medium 
show that Cas9/sg17 reduce HBV infection in de novo infection. 17M: 5 bp mismatch control. 17D: dead 
Cas9 with g17. Data shown are from one representative experiment, and consistent across experiments. (h) 
Surveyor assay performed on DNA untreated (left) or treated (right) with Plasmid-Safe DNase to remove 
non-episomal viral forms. Arrowheads indicate indel formation. (b-c) *p <  0.05 for selected comparison; 
**p <  0.01 for selected comparison, as assessed by one-way ANOVA with Tukey post-hoc test.
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by the very small amount of episomal HBV remaining at late time points (Fig. 2d, Fig S4). Consistent 
with high levels of indel formation in the core ORF targeted by sg17, immunostaining for HBV core 
protein (HBc) revealed a robust reduction in HBc levels in sg17-expressing cells as compared to con-
trols (Fig. 2f). Because long-term expression of Cas9 and guide RNAs can lead to off-target cleavage at 
sites with homology to the target sequence, we then performed next-generation sequencing at several 
computationally predicted off-target sites for sg6, sg17, and sg21. Within the sensitivity of our assay 
(< 0.3% based on read depth), we detected no indel formation at the 8 off-target sites that we surveyed 
after constitutive expression of Cas9 and sgRNAs for over four weeks (Fig. S7a). This observed specific-
ity may be due to the large sequence differences between viral and human genomic DNA (Fig. S7b-d). 
These encouraging results still did not exclude the possibility that some of the antiviral effects of Cas9 in 
the HepG2.2.15 system occur through mutations in integrated HBV DNA, thereby reducing the fitness 
and/or persistence of virions produced from mutated loci rather than acting directly on episomal DNA. 
Since integration of HBV DNA into the host human genome is not part of the canonical HBV life-cycle, 
we next evaluated the effects of Cas9 targeting in the context of de novo HBV infection, where episomal 
cccDNA serves as the only template for viral gene expression and replication.

Cas9 cleaves cccDNA and inhibits de novo HBV infection. To evaluate our anti-HBV CRISPR/
Cas9 strategy in a setting of de novo infection, we used HepG2 cells overexpressing the HBV receptor 
NTCP (Hep-NTCP)14, which are permissive to infection with HBV. Because sg17 showed the highest 
levels of cccDNA mutagenesis in our HepG2.2.15 experiments, these cells were transduced with Cas9/
sg17, Cas9/sg17M, or dCas9/sg17 lentiviruses, co-cultured with HBV producing HepG2.2.15 cells, and 
selected with puromycin to get rid of non-transduced Hep-NTCP and co-cultured HepG2.2.15 cells 
(Fig S8 left). Alternatively, Hep-NTCP cells were selected with puromycin following transduction and 
subsequently infected with HBV-positive patient serum (Fig S8 right). When the transduced Hep-NTCP 
were infected with cell culture-produced virus, Cas9/sg17 greatly abrogated productive HBV infection, 
as reflected by reduction in HBsAg and HBV DNA secretion, as well as 3.5kb RNA and cccDNA levels, 
compared to controls (Fig.  2g); this was confirmed by infection with patient-derived virus (Fig S9). 
While nuclease-deficient Cas9 also reduced viral 3.5kb RNA abundance in this system, this finding fits 
with other reports that dCas9 binding can inhibit transcription in mammalian cells15. Surveyor assay 
performed using DNA from cells infected de novo with HepG2.2.15-derived virus confirmed direct 
Cas9-mediated mutagenesis of HBV episomal DNA (Fig.  2h). Although some mutagenesis was also 
detected when the mutated sg17M was used, this most likely was due to low-level cleavage with DNA 
bulge-containing guide RNAs16. This finding provides direct evidence that Cas9 is capable of targeting 
episomal forms of the virus, and exerting anti-HBV effects by directly targeting cccDNA.

Discussion
Although largely unexplored in mammalian systems, bacteria and archaea utilize sequence specific DNA 
nucleases to interfere with viral replication17. Inspired by CRISPR’s evolutionary origins, we aimed to 
exploit the antiviral activity of Cas9 to target HBV DNA in mammalian cells. We show that targeting 
multiple conserved regions of HBV with Cas9 results in robust suppression of viral replication and direct 
mutagenesis and depletion of cccDNA. While integrated forms of HBV DNA were not depleted by Cas9 
cleavage, these forms should not contribute to viral rebound in vivo18, and Cas9-driven mutagenesis 
of these sequences nonetheless would damage the viability of viral proteins generated from integrants. 
The unique advantages of the CRISPR/Cas9 system (such as multiplexed targeting) are of interest in 
developing antiviral applications, and indeed, very recently other groups have published examples of 
Cas9 cleavage of HBV in multiple model systems19–22. Our work provides an extension beyond these 
complementary studies, by demonstrating the anti-HBV effects of sgRNAs specifically targeting highly 
conserved regions of HBV in vitro and in vivo, by directly confirming mutagenesis in cccDNA in a de 
novo infection model of HBV, and extending this antiviral activity to patient-derived virus. Additionally, 
our finding that appropriately chosen virus-targeting sgRNAs can avoid inducing off-target cleavage, 
even upon sustained Cas9/sgRNA expression, strengthens the case for selecting viral targets as good 
candidates for CRISPR/Cas9 therapeutic use23.

Interestingly, while Cas9/sg17 was efficient in suppressing infection and in directly cleaving nuclear 
cccDNA, Cas9/sg21 efficiently cleaved only integrated but not episomal DNA, which resulted in a lack of 
activity for Cas9/sg21 in de novo infection experiments (data not shown). The reason for this is unclear 
and warrants further study. Cas9 is a large multi-domain protein, and thus one hypothesis is that par-
ticular regions of the HBV genome are differentially accessible to Cas9 because of the tightly packed 
physical architecture of cccDNA. This underscores the importance of using models of authentic cccDNA 
to investigate therapeutic applications of targeted nucleases for HBV, and suggests that a careful selection 
of targets and guides will be required to achieve a substantial mutagenesis and depletion of viral DNA. In 
addition, our proof of concept experiments show that multiplexing sgRNAs can generate stronger anti-
viral effects (Fig S2), suggesting that this strategy may further maximize CRISPR-mediated restriction of 
components of the viral life cycle, possibly including cccDNA stability.

This study provides a proof of concept, but clinical translation of CRISPR/Cas9 systems to cure HBV 
will require some advances over the work described here. First, an exhaustive profiling of possible Cas9 
target sites on cccDNA can uncover optimal target sites based on cccDNA accessibility and sgRNA 
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binding properties. Secondly, delivery of Cas9/sgRNA constructs in vivo will require the use of clinically 
relevant delivery vectors such as AAV, which may require additional modifications such as switching to 
smaller Cas9 orthologs to save packaging size30. Finally, although we could not find evidence of off-target 
cutting in our directed sequencing, possibly due to the low homology between viral and human genomic 
Cas9 targets, an extensive genome-wide profiling of off-target effects is warranted.

The unusual persistence of cccDNA is currently the major obstacle for curing chronic HBV infection. 
To eliminate the virus and to prevent possible re-activation, it is probably necessary to eliminate all or 
at least the vast majority of episomal DNA from hepatocytes through a combination of exogenous treat-
ment (presented here) and immune-mediated endogenous clearance. CRISPR/Cas9-mediated therapy 
may synergize with currently-used RT inhibitors, which should block the formation of new molecules of 
cccDNA via re-entry of newly synthesized replicative forms to the nucleus. The developments proposed 
above represent an active area of investigation for groups looking for ways to use CRISPR in a therapeutic 
fashion more broadly, which may accelerate progress toward an anti-HBV CRISPR therapeutic.

In summary, these results constitute the first example of CRISPR/Cas9 systems directly targeting an 
authentic pathogenic virus with episomal DNA, and demonstrate the potential for cccDNA-directed anti-
viral therapy using Cas9, which may represent a significant step towards the cure of chronic HBV infec-
tion. The results demonstrated here may also be used to inform the development of CRISPR/Cas9-based 
therapeutics for other DNA viruses, such as herpesviruses and papillomaviruses that use an episomal 
DNA as a template for their gene expression and replication.

Methods
Tissue culture and transfection experiments. HepG2 or HepG2.2.15 cells were maintained in 
DMEM and 10% fetal calf serum (FCS) as previously described24. For transfection experiments, the 
1.3xHBV plasmid was used as previously described25 . Briefly, an over-length HBV genome (adw strain) 
of 4195bp was produced, harboring a 5’ terminus of the unique EcoRV site (nt 1043, considering EcoRI 
unique site in the original 3.2kb HBV construct as nt number 1) and a 3’ terminus of the unique Taq1 site 
(nt 2017). This EcoRV-TaqI fragment was inserted between the SmaI-AccI unique sites of a pGEM-3Z 
plasmid, respectively. This plasmid expresses all HBV gene products and generates infectious virions 
secreted to the medium. Transfection was carried out using the TransIT- 2020 transfection reagent 
(MIRUS) according to the manufacturer’s instructions.

Total HBV and cccDNA extraction and analysis. Cell pellets or mediums were collected and 
DNA was extracted using the QIAamp DNA blood mini kit (QIAGEN, cat No 51104) or QIAamp 
Minielute Virus spin kit (QIAGEN, cat No 51104), respectively. DNA was extracted according to the 
manufacturer’s protocol, and final product was eluted in 60ul of water. 5ul was taken for a QPCR. 
PCR for total HBV DNA using the TaqMan® Universal PCR Master Mix (Applied Bio systems, Cat 
No 4304437) and the following primers and probe: 5’CCGTCTGTGCCTTCTCATCTG3’ (sense), 
5’AGTCCAAGAGTCCTCTTATGTAAGACCTT3’ (anti sense), 5- /56-FAM/CCG TGT GCA /ZEN/CTT 
CGCTTC ACCTCT GC/3IABkFQ/ -3 (probe). PCR was done using the Roche LightCycler ®480 PCR 
machine. Quantification was done according to a standard curve composed from 2xHBV plasmid in a 
concentration range of 109–101 copies.

For cccDNA extraction and analysis, DNA extracted from cells was subjected to ON digestion 
with a plasmid-safe DNase (Epicentre) as previously described14. Following enzyme inactivation at 
70° C for 30min, DNA was subjected to real-time PCR using SYBR® Premix Ex Taq (TaKaRa) fol-
lowing a previously described protocol14 and using cccDNA specific primers previously described by 
Glebe et al.26. The primers used for cccDNA amplification: 5’TGCACTTCGCTTCACCTF3’ (sense) 5’ 
AGGGGCATTTGGTGGTC3’ (anti sense). For quantification, a standard curve derived from decreasing 
concentrations of 2xHBV plasmid was used. PCR was performed using the Roche LightCycler ®480 PCR 
machine.

Hirt’s extraction. Hirt’s extraction was performed as previously described27. About 60% of final DNA 
extract derived from one well of a 6-well plate was run for Southern blot analysis.

Southern blot analysis. Total DNA or Hirt’s extract were run on 0.8% agarose-TAE gel, followed 
by denaturation and southern blotting to a Hybond N nylon membrane (Amersham). Viral DNA was 
detected by hybridization with a 32P random primed HBV probe, using the Prime-It II Random Primer 
Labeling Kit (Agilent Technologies, Cat No 300385). Following incubation and washing, membrane was 
visualized by phosphorImager and later exposed to film.

HBV mRNA analysis. Total RNA was isolated via TRIZOL RNA/DNA extraction. After being sub-
jected to DNaseI treatment, RNA was quantified using a NanoDrop and first-strand cDNA was synthe-
sized using SuperScript® III RT kit (INVITROGEN). Quantitative PCR for 3.5kbRNA or total HBV RNA 
was carried out with SYBR Green PCR master Mix (Applied Biosystems) and using specific primers 
previously described14. In each reaction an RT negative control was included to rule-out DNA carry over.
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Immunostaining for HBV Core antigen. Cells were grown on chambered coverglasses (Lab-Tek, 
Rochester, NY), washed with PBS, and then fixed with 4% paraformaldehyde. Cells were washed again 
(3x PBS) and treated with 100 mM glycine solution in PBS. After permeabilization with 0.1% Triton 
X-100 in PBS and treated with Image-iT™ FX signal enhancer (Life Technologies). Cells were blocked 
in PBS/10% goat serum (Jackson Immunosearch)/1% BSA. HBV core staining was achieved by using a 
polyclonal rabbit anti-HBV core antibody (Dako, CA) diluted 1:1000 in PBS/0.1% BSA (18 h at 4 oC). As 
a secondary antibody a goat-anti-rabbit labeled with AlexaFluor594 (Life Technologies) diluted 1:2000 
in PBS/0.1% BSA was used. Nuclear staining was achieved using DAPI treatment. Image acquisition was 
performed in a Zeiss confocal microscope and image analysis was done using ImageJ (NIH, Bethesda, 
MD).

Hepatitis B e Antigen and HBsAg ELISA. The HBV e Antigen ELISA was performed using the 
Hepatitis B e Antigen (HBeAg) chemiluminescence Immunoassay kit (Autobio Diagnostics Co, Cat 
No.CL0312-2) according to the manufacturer’s instructions. For HBsAg detection, 100ul medium was 
loaded on ELISA plates coated with mouse monoclonal anti HBsAg antibodies (Bio-Rad, GS HBsAg 
EIA 3.0, Cat. No. 32591). ELISA was carried out according to the manufacturer’s instructions. Plates 
were read using the FLUOstar Omega luminometer (BMG LABTECH). HBsAg positivity (cutoff) was 
calculated as an average of 3 negative controls+ 0.07.

Animal studies. NRG mice were injected with a mixture of 15ug 1.3xHBV plasmid, 20ug the CRISPR 
expressing plasmid and 10ug of luciferase expressing plasmid (to control for expression efficiency) using 
the hydrodynamic delivery (HDD) technique, as previously described11. Plasmids were dissolved in PBS 
in a volume corresponding to 0.09 times the animal weight (in grams) and the mixture was injected 
through the tail vein in 7-9 sec. To verify successful injection and gene expression, animals were visual-
ized by the IVIS machine at various time points after HDD. Mice were housed in an AAALAC-accredited 
facility and all experiments were performed in accordance with the Guide for the Care and Use of 
Laboratory Animals. All procedures outlined in the study were approved by The Rockefeller University’s 
Institutional Animal Care and Use Committee (IACUC).

Lentivirus production. 293T cells were co-transfected with the sgRNA-Cas9-2A-Puro lentiviral vec-
tors (Fig. 2A) and a 2nd-generation lentiviral packaging system (psPAX2 and pMD2.G) at a ratio of 3:2:1. 
Cells were washed 24h after transfection, supernatant was collected every 24h from 48-96h post trans-
fection, and cell debris was removed by centrifugation. Lentivirus was concentrated by ultracentifugation 
for 1.5h at 16,600x g, incubated O/N in Optimem at 4C, then resuspended in Optimem, aliquoted and 
frozen at -80C the next day, prior to use.

Transduction and drug treatment experiments. HepG2.2.15 cells were maintained as noted 
above until transduction, and then transduced with sgRNA-Cas9-2A-Puro lentiviruses at a confluence 
of 50-60% with an MOI of 1. Transduction was performed by mixing lentivirus aliquots with standard 
HepG2.2.15 culture medium, washing cells and adding lentivirus-containing medium at 2.5 mL/well in 
a 6-well plate, centrifuging for 1h at 200 x g and then incubating for an additional 23h. 24h after addi-
tion of lentivirus, cells were washed 3x and incubated in standard medium+ 2.5 ug/mL puromycin to 
remove untransduced cells. Puromycin selection was continued for 48h, then cells were washed 3x and 
maintained in standard medium. Transduced cells were then continually passaged upon reaching 80% 
confluence; at each passage, cells were counted, cell pellets were harvested for each condition, and a 
portion of the remaining cells were reseeded at 10% confluence.

Cloning of CRISPR Constructs. Cas9 constructs with guide RNAs targeting sequences present in the 
HBV genome integrated into the HepG2.2.15 cell line were used for the described experiments. Guide 
RNAs were of the form 5’-G(N19)-3’ with their target sequences having the form of 5’-G(N19)-NGG-3’. 
Oligos to create gRNAs were cloned into the lentiCRISPR construct described in (12) or PX330a described 
in (21).Two sets of control constructs were generate: Mismatched guide RNA control constructs for 
promising guide RNA molecules were created by ligating in oligos to PX330a or lentiCRISPR that con-
tained 5 basepair mismatches at the 3’ end of the spacer, but were otherwise identical to constructs 
designed to target HBV. Cas9 D10A/H840A nuclease dead control constructs were generated by digest-
ing lentiCRISPR plasmid guide RNA containing constructs with BamHI and XbaI (ThermoScientific) 
and then inserting a PCR amplified D10A/H840A Cas9 using Gibson Assembly. D10A and H840A are 
mutations that are sufficient to abolish the nuclease activity of S. pyogenes SF370 Cas98,28.

Surveyor. Targeted loci were amplified by PCR using Phusion Flash (NEB) or Heruclase II (Agilent) 
polymerases and primers listed in Table S2. For sg17 and sg21, two separate sets of primers were designed 
for each guide in order to optimize the PCR reaction; sets F2 and R2 are recommended. PCR products 
were gel or PCR-purified using Qiagen kits and subject to the Surveyor assay (Transgenomics) according 
to the manufacturer’s instructions. Indel rate for surveyor was calculated as described in reference (8).
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Deep sequencing for on-target and off-target cleavage. Potential off target sites were identified 
using the CRISPR online design tool (crispr.mit.edu). 8 of the top chromosomal off-target sites for guides 
sg6, sg17 and sg21, along with on-target sites, were PCR amplified with primers designed to attached 
Illumina P5 adapters and sample-specific barcodes. PCR products were purified using QIAQuick PCR 
Spin Columns (QIAGEN), quantified with a Qubit 2.0 Fluorometer (Life Technologies) and pooled in 
an equimolar ratio. Amplicons were then sequenced with the Illumina Miseq Personal Sequencer. Indel 
frequencies for NGS reads were calculated in a manner similar to Hsu et al.29 in Geneious.
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Figure S1: Guide RNAs targeting conserved regions target large majority of patient-7 

derived virus genomes. All whole-genome sequences from HBV isolates were queried from 8 

GenBank to determine the conservation of 23 nt target sequence (20 nt spacer + 3 nt PAM) for 3 9 

guides (6, 17, and 21). x-axis denotes number of allowed mismatches, and y-axis denotes the 10 

percentage of sequenced isolates that fall within this number of mismatches to native sgRNA 11 

target site. 12 

 13 



Figure S2: Multiplex targeting of HBV improves antiviral potency of CRISPR/Cas9. 1 

HepG2 cells were co-transfected with 1.3x WT HBV and sgRNA/Cas9-2A-mCherry construct, 2 

where the sgRNA is an untargeted control (UT), sg17, sg21, or a combination of sg17 and sg21. 3 

The combination of sg17 and sg21 reduces (a) HBsAg production and (b) HBV 3.5kb RNA 4 

relative to single targeting with sg17 and sg21. *p < 0.05 vs. all other groups, ***p < 0.001 vs. 5 

indicated groups. 6 

 7 

 8 

Figure S3: The HBV life cycle within HepG2.2.15 cells. HepG2.2.15 cells contain genomically 9 

integrated linear 1.3x WT HBV sequences, from which viral proteins and cccDNA are 10 

constitutively produced via transcription followed by translation (proteins) or reverse 11 

transcription and nuclear re-import (cccDNA). The persistent HBV production in this system 12 



enables us to assay the long-term anti-HBV effects of CRISPR/Cas systems targeting viral DNA.1 

 2 

Figure S4: HBV products are reduced upon long-term CRISPR/Cas expression. Stable lines 3 

of HepG2.2.15 cells expressing 3 different on-target guides with nuclease-active or nuclease-4 

dead Cas9, along with 3 non-HBV targeting guides, were seeded at consistent cell densities 5 

(20,000 cells/cm2) and allowed to secrete virions and viral proteins into the supernatant. 72h 6 

later, supernatant was collected and (a) viral titer and (b) HBeAg (a secreted protein produced 7 

from the C ORF, used clinically as a marker of active viral replication) were quantified. UT 8 

stands for untargeted guides, where scrambled sgRNAs were used instead of those targeting 9 

HBV. (c) Total HBV RNA and 3.5kb RNA (consisting of pregenomic RNA and the longest 10 



translated HBV RNA species, which are difficult to distinguish) were quantified at 36 days post 1 

transduction, with HBV RNA suppression continuing out to this late time point. (a-b) *p < 0.05 2 

vs. UT; **p < 0.01 vs. UT; ***p <  0.001 vs. UT as assessed by one-way ANOVA followed by 3 

Dunnett’s post-hoc test. 4 

 5 

Figure S5: HBV DNA and cccDNA reductions upon long-term CRISPR/Cas expression are 6 

produced with multiple guides. (a) cccDNA reductions at 21 and 36 days post transduction 7 

across 3 guides (6, 17, and 21); large reductions are seen in each. (b) Total HBV DNA reductions 8 

at 21 and 36 days post transduction are also large across these 3 guide RNAs. 9 



 1 

Figure S6: Southern blot analysis confirms that CRISPR-mediated reduction in viral DNA 2 

is specific for nonintegrated forms. At 36 days post transduction, DNA was isolated from 3 

HepG2.2.15 cells transduced with guide 17 or 21 or appropriate controls and a Southern blot was 4 

performed to detect HBV DNA. Comparing lanes 1 and 4 to the control lanes, it is clear that 5 

cccDNA and free linear double- and single-stranded HBV DNA are dramatically decreased, 6 

while the chromosomally integrated HBV DNA remains intact. 7 



 1 

Figure S7: Lack of off-target effects at predicted potential off-target sites. (a) Viral and 2 

human genomic sequences around computationally predicted on-target and off-target sites were 3 

amplified from HepG2.2.15 cells that were lentivirally transduced with CRISPR/Cas9 constructs 4 

at over 4 weeks post transduction. Amplicons were deep sequenced to determine indel generation 5 

at off-target sites, and no indels were captured in any of the 8 off-target sites measured (with on-6 

target indel fraction between 10-36%. (b-d) Computationally predicted off-targets for guides sg6, 7 

sg17, and sg21 with off-target rank on x axis and computationally determined off-target score 8 

(blue) and number of mismatches (red) on y axis. 9 



 1 

Figure S8: Schematics for de novo infection experiments. Hep-NTCP cells were transduced 2 

with Cas9/gRNA constructs containing either g17 or g17M (mutant of  g17, resulting in 5bp 3 

DNA bulge upon complexation to HBV DNA target), and either WT or dead Cas9, and then 4 

selected with puromycin to generate stable lines. (Left) These cells were seeded in coculture with 5 

HepG2.2.15 cells, which produce infectious HBV virions that then infect the transduced Hep-6 

NTCP cells. After transient coculture, HepG2.2.15 cells were killed by puromycin selection, and 7 

Hep-NTCP cells were cultured for several days and then harvested to assay viral parameters. 8 

(Right) These cells were infected with HBV virions derived from HBV+ patient plasma, then 9 

cultured and harvested to assay viral parameters. 10 



 1 

Figure S9: CRISPR/Cas-mediated disruption of HBV in patient-derived virus model 2 

system. Hep-NTCP cells (See Methods) were infected with HBV from infected patient serum 3 

upon transduction of guide 17 and active or nuclease-dead Cas9. 9 days after infection, the cells 4 

were harvested and viral products were quantified. Nuclease-active Cas9 caused decreases in 5 

HBV 3.5kb RNA, cccDNA, and total DNA levels.  6 

Table S1: Target sequences against HBV genome 7 

sgRNA  Target sequence (20 nt) 

 1 GACTTCTCTCAATTTTCTAG 

 2 GTTGGTGAGTGATTGGAGGT 

 3 GGCATAGCAGCAGGATGAAG 

 4 GGCTTTCGGAAAATTCCTAT 

 5 GCTGCCAACTGGATCCTGCG 

 6 GGGGCGCACCTCTCTTTACG 

 7 GAAGCGAAGTGCACACGGTC 

 



8 GCAGAGGTGAAAAAGTTGCA 

 9 GTTGATAGGATAGGGGCATT 

 10 GTCGCAGAAGATCTCAATCT 

 11 GCCTGCTAGGTTTTATCCAA 

 12 GGAACAAGATCTACAGCATG 

 13 GGCGAGGGAGTTCTTCTTCT 

 14 GACCTTCGTCTGCGAGGCGA 

 15 CCTCCAAGCTGTGCCTTGGG 

 16 ATCGACCCTTATAAAGAATT 

 17 TAAAGAATTTGGAGCTACTG 

 18 CCCGTCGGCGCTGAATCCTG 

 19 GGGTTGCGTCAGCAAACACT 

 20 TTTGCTGACGCAACCCCCAC 

 21 TCCTCTGCCGATCCATACTG 

 22 CCGCTTGTTTTGCTCGCAGC 

 23 AACCCCCACTGGCTGGGGCT 

 24 CCTGCTGCGAGCAAAACAAG 

 
 1 

Table S2: Primers used for Surveyor Assay 2 

Guide 6-F: TATCCATGGCTGCTAGGCTG 3 

Guide 6-R: AGTCAGAAGGCAAAAACGAGAG 4 

Guide 17-F1: TATCCATGGCTGCTAGGCTG 5 

Guide 17-R1: AGGGGCATTTGGTGGTC 6 

Guide 17-F2: AAATTGGTCTGCGCACCAGC 7 

Guide 17-R2: AGGTCTCTAGATGCTGGATCTTCC 8 

Guide 21-F1: GGTTATCCTGCGTTAATGCCC 9 

Guide 21-R1: GTCCGCGTAAAGAGAGGTG 10 

Guide 21-F2: TGAACCTTTACCCCGTTGCCC 11 

Guide 21-R2: AGAGAGTCCCAAGCGACCCC 12 

 13 

 14 
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