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RNA interference (RNAi) is a cellular process whereby the
silencing of a particular gene is mediated by short RNAs. One type
is mediated by short interfering RNAs (siRNA) in which the
antisense strand of a double-stranded RNA duplex guides recogni-
tion and catalytic degradation of a target mRNA by the RNA-
induced silencing complex (RISC). Another is mediated by
endogenous ∼20-25nt short RNAs known as microRNAs (miR-
NAs) that either repress translation and/or enhance degradation of
target mRNAs. There has been tremendous interest in advancing
the fundamental understanding of both pathways and harnessing
them for therapeutic applications by delivering short RNAs into
cells to control gene expression; however this delivery has been
challenging.1 To achieve successful gene silencing using siRNA,
several key delivery requirements must be met: the siRNA must
survive degradation in the extracellular milieu, be transported to
the cell surface, cross the cell membrane, and ultimately enter RISC
where unwinding and pairing of the antisense strand with native
mRNA occur.

In ViVo, free siRNA is too rapidly cleared through the kidney to
be effective; thus a variety of carriers have been explored that extend
its circulation time and aid in trafficking to the site of disease. Over
the past decade, systematic investigations by several groups to
address this siRNA delivery challenge have started bearing fruit.2–9

A plethora of cationic polymers (including lipids) and nanoparticles
(e.g., magnetic, quantum dots, gold and carbohydrate nanoparticles)
have been shown to deliver siRNAs resulting in silencing of specific
genes both in Vitro and in ViVo.7,10–12 As a result, methods for
complexation/conjugation of siRNA with various delivery agents
and a better understanding of the delivery process have emerged.10,13

Both charge-charge complexation of cationic polymers with
anionic siRNAs and covalent coupling of siRNAs with polymers
or nanoparticles have been shown to be effective in delivering
siRNAs.10

Nonetheless, reports describing the effects of nanoparticle
conjugation on RISC incorporation and subsequent gene silencing
have been mixed.14 Moreover, it is unclear how the length of linker
between nanoparticle and siRNA, direction of conjugation (3′ vs
5′), and strand used for conjugation (sense vs antisense) affect the
relative extent of gene silencing for a given nanoparticle system.
For example, a high level of gene silencing was observed in ViVo
using a nanoparticle-siRNA conjugate when the antisense strand
was conjugated to the nanoparticle Via a thioether nonlabile bond15

while other reports suggest that a labile cross-linker forming a

disulfide bond leads to greater silencing in comparison with a
nonlabile amide bond forming cross-linker.16 In another report, Dai
et al. showed that a labile disulfide bond based carbon nanotube-
siRNA conjugate leads to greater gene silencing in comparison with
a nonlabile nanotube-siRNA conjugate.17 Elsewhere, it has been
reported that chemical modification of the 5′- terminus of the
antisense strand can limit RNAi activity.18,19 Still, nanoparticles
conjugated with the 5′ antisense end of siRNA have been shown
to cause effective gene silencing.7,15 To reconcile these seemingly
disparate findings, we embarked on a systematic evaluation of
siRNA coupling strategies using a single nanoparticle system, cell
type, and target gene.

Here, we present a systematic study utilizing a single nanoparticle
system to investigate the effect of siRNA-nanoparticle conjugation
on gene silencing (Figure 1a). We studied gene knockdown (KD)
by siRNAs that are covalently coupled to the surface of a
nanoparticle Via their sense or antisense strand using a labile (Figure
1a, I and II) or nonlabile (Figure 1a, III-V) cross-linker of varying
lengths. We chose quantum dots as a model nanoparticle system
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Figure 1. Probing the effect of conjugation strategy on gene silencing by
QD-siRNA conjugates. (a) Scheme for probe synthesis. (b) Characterization
of the probes. (Left) Gel electrophoresis of QD-siRNA conjugates.
Conjugation with labile cross-linkers (SPDP and SMPT) releases the
conjugated siRNA upon treatment with glutathione. Arrow indicates free
siRNA. (Middle) Gel electrophoresis of QD-siRNA with nonlabile male-
imide cross-linker indicating the absence of unbound siRNA. (Right)
Intracellular delivery of QD-siRNA conjugates by electroporation in
modified HeLa (GFP-Ago2/Luc-CXCR4) cells. QD-siRNA conjugates are
in red, green is Ago2-GFP, and the nuclei are stained with DAPI (blue).
Scale bar is 30 µm.
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due to their excellent photoluminiscent properties providing the
ability to be monitored Via optical imaging.20 The sense strand (S-
siRNA) or the antisense strand (As-siRNA) of thiol-modified
siRNAs was coupled with the amines on QD655-PEG-NH2 Via
labile disulfide forming sulfosuccinimidyl 6-(3′-[2-pyridyldithio]-
propionamido) hexanoate (SPDP) and sulfosuccinimidyl 6-[R-
methyl-R-(2-pyridyldithio)toluamido] hexanoate (SMPT) or Via
nonlabile thioether forming succinimidyl-[(N-maleimidopropiona-
mido)-nethylene glycol] ester (NHS-PEOn-Maleimide). After con-
jugation the QD-siRNA conjugates were purified and analyzed for
siRNA release, purity, and cytosolic distribution (Figure 1b). To
ensure the release of siRNAs from the nanoparticles conjugated
Via labile cross-linkers, the conjugates were incubated in a
glutathione concentration (10 mM) similar to intracellular levels
and analyzed by gel electrophoresis. Glutathione was able to release
siRNA from nanoparticles that had labile SPDP and SMPT as cross-
linkers (Figure 1b, left). On the other hand, the nanoparticles with
nonlabile maleimide cross-linkers (QD-4-Mal, QD-12-Mal, and QD-
24-Mal) did not release the siRNA (Figure 1b, left) irrespective of
the conjugation site (Figure 1b, middle). The amount of siRNA on
the nanoparticles was quantified for all the samples by SYBR gold
staining. The conjugation resulted in ∼3 siRNA per QD nanopar-
ticle. The purity of the samples (free of unbound siRNA) was
confirmed by electrophoretic, UV, and gene KD experiments
(Figure 1b and Supporting Information).

The nanoparticle conjugates were delivered to the cytosol of
modified HeLa cells (stably transfected with GFP-Ago2/Luc-
CXCR4) by electroporation to avoid membrane interactions.
Electroporation resulted in an association with most cells and a
cytosolic distribution as observed by epifluorescent microscopy
(Figure 1b, right). It has been shown earlier by our group that
electroporation can be an efficient delivery scheme for QD
conjugates into the cytosol without the loss of surface ligands.21

The modified HeLa cell line stably expressing GFP-Ago2 and
Renilla luciferase allowed testing the siRNA activity Via two RNAi
pathways: miRNA-mediated repression and siRNA-mediated cata-
lytic cleavage of the targeted transcript. To examine the miRNA
pathway, the 3′ untranslated region of the luciferase was modified
by insertion of two partially complementary binding sites for a
specific siRNA, siCXCR4 (Figure 1a, siRNA activity reporter).
Functioning like an endogenous miRNA, the siCXCR4 binds in a
bulged configuration, resulting in translational suppression and
mRNA degradation of the targeted transcript.22,23 On the other hand,
a siRNA targeting the coding region of the luciferase, siLuc, was
used to examine the efficiency in siRNA-mediated cleavage of the
targeted transcripts in the same cell line. The degree of KD was
assessed through luciferase activity after 48 h.

QDs with siRNA conjugated Via labile cross-linkers SPDP
(Figure 2a) and SMPT (Figure 2b) were able to KD the luciferase
gene with high efficiency (>90%). This is probably due to release
of siRNA from the nanoparticle driven by cleavage of the labile
bond in the reducing intracellular environment24 making siRNA
available for incorporation into the RISC complex, which results
in efficient gene KD consistent with the observation of Dai and
co-workers with hydrophobic carbon nanotubes.17 On the other
hand, use of a short nonlabile cross-linker resulted in poor gene
KD (Figure 2c) similar to what was observed by our group
previously.16 This is likely due to poor availability of siRNA for
the RISC complex, driven by the steric hindrance of a large
nanoparticle. We hypothesized that a longer tether may alleviate
the steric hindrance and improve accessibility of siRNA on a
nanoparticle. In a comparison of maleimide cross-linkers with a
spacer arm length of 24.6 Å (PEO-4-Mal), 53.4 Å (PEO-12-Mal),

and 95.2 Å (PEO-24-Mal), increasing the chain length improved
the gene silencing efficiency from undetectable levels of KD for
QD-4-Mal-siRNA (Figure 2d) to ∼30% for QD-12-Mal-siRNA
(Figure 2e) and finally to >90% for QD-24-Mal-siRNA (Figure 2f).
Thus, nonlabile cross-linkers can provide comparable efficiencies
to labile cross-linkers under certain circumstances.

In comparing the effects of strand orientation, we found that
luciferase activity was knocked down equivalently irrespective of
whether the antisense or sense strand of siRNA was attached to
the QD surface (Figure 2), suggesting that conjugation to the QD
has little inhibitory effect on siRNA activity and that the site of
conjugation may not be critical, which was also observed by Moore
and co-workers with a different nanoparticle system.15 Thus, having
the sense strand conjugated and the antisense strand hybridized (thus
easily released) does not offer a significant advantage over having
the antisense strand conjugated and sense strand hybridized. Rather,
the stability of the cross-linking bond and tether length were the
dominant determinants of knockdown efficiency.

For in ViVo applications, reducing agents in the bloodstream can
release siRNA from the nanoparticle even before siRNA-nanopar-
ticle conjugates are able to reach the cells. This would reduce the
extent of KD due to low amounts of siRNA targeted to cells.
Therefore, we investigated the stability (against disulfide bond
reduction) and gene silencing efficiency of the siRNA-nanoparticle
conjugates with the labile (SPDP and SMPT) and the longer
nonlabile (PEO-24-Mal) cross-linker after exposure to serum. The
siRNA-nanoparticle conjugates were incubated in 10% fetal bovine
serum (FBS) and purified Via filtration to remove free siRNA
(released from the nanoparticle surface by serum). The purified
nanoparticle conjugates were then analyzed by gel electrophoresis
(Figure 3a) for the amount of siRNA that remained on the nano-
particle surface. After 8 h, all of the siRNA was released (by serum)
from the QD-siRNA conjugates with labile cross-linkers SPDP and
SMPT, as further treatment with glutathione did not release any

Figure 2. KD of luciferase by QD-siRNA conjugates with antisense (As)
or sense (S) strand of siLuc and siCXCR4 conjugated (n ) 3). KD by QD-
siRNA conjugates with labile (a) SPDP, (b) SMPT, and short nonlabile (c)
PEO-12-Mal. KD by nonlabile cross-linker of varying length (d) PEO-4-
Mal, (e) PEO-12-Mal, (f) PEO-24-Mal.

8242 J. AM. CHEM. SOC. 9 VOL. 132, NO. 24, 2010

C O M M U N I C A T I O N S



siRNA. The release in serum was faster for the SPDP cross-linker
(4 h) in comparison to SMPT (8 h), which is expected due to the
less stable disulfide bond in SPDP. We analyzed the KD efficiency
after incubating the conjugates for 8 h in 10% FBS and then
removing the free siRNA from the samples. We observed that the
QD-siRNA conjugates with labile cross-linkers (SPDP and SMPT)
lost their KD efficiency after 8 h, whereas the conjugate with the
nonlabile cross-linker (PEO-24-Mal) was able to maintain its
activity and ability to efficiently KD luciferase (Figure 3b). Thus,
nonlabile cross-linkers offer improved stability of the nanoparticle
conjugates and do not compromise the KD efficiency as long as
they are long enough to allow siRNA-RISC interaction without
steric hindrance from the nanoparticle.

In conclusion, using a single nanoparticle system with varying
conjugation schemes and model cell line, we have shown that the
accessibility of the siRNA linked to the nanoparticle may be critical
for efficient gene KD mediated by both siRNA and miRNA
pathways. In this model system, the efficiency of KD is governed
by the conjugation strategy (labile vs nonlabile) used for attaching
the siRNA to the nanoparticle and the tether length in the nonlabile

case. These findings were independent of the strand orientation.
While our findings may be specific to a surface chemistry, target
mRNA, and cell line, we believe these data provide a useful
framework that can be used to guide siRNA conjugation strategies
across different model systems to achieve efficient gene silencing.
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Figure 3. Performance of QD-siRNA conjugates with different conjugation
chemistries after incubation in 10% FBS at 37 °C. (a) Gel electrophoresis
of QD-siRNA showing the loss of siRNA after 8 h when conjugated with
a labile cross-linker. (b) Comparison of the luciferase KD efficiency by
QD-siRNA conjugates after incubation in 10% FBS.
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Materials. Quantum dots with emission maxima of 655 nm and modified with PEG and amino 

groups were obtained from invitrogen. QD concentrations were measured by optical absorbance 

at 490 nm, using extinction coefficients provided by the supplier. Cross-linkers used were 

sulfosuccinimidyl 6-(3-[2-pyridyldithio]- propionamido)hexanoate (SPDP), sulfosuccinimidyl 6-

[α-methyl-α-(2-pyridyldithio)toluamido] hexanoate (SMPT) and non-labile thioether forming 

Succinimidyl-[(N-maleimidopropionamido)-nethylene glycol] ester (NHS-PEOn-Maleimide) 

with n=4,12 and 24. All the crosslinkers were purchased from Pierce. Synthetic RNA duplexes 

directed against Luciferase and CXCR4 gene were synthesized (Alnylam), with the sense strand 

or the antisense strand modified to contain a 3' thiol group. The sequence for Luc siRNA used is 

5'-GCCAAGAAGUUUCCUAAUAdTdT (sense strand) and 5'-

UAUUAGGAAACUUCUUGGCdTdT (antisense strand). The sequence for CXCR4 siRNA 

used is 5'-GUUUUCACUCCAGCUAACAdTdT-3' (sense strand) and 5'-

UGUUAGCUGGAGUGAAAACdTdT-3' (antisense strand).  

 

Conjugation of siRNAs to QDs: 

 Amino-modified QDs were conjugated to thiol-containing siRNA using SPDP, SMPT and 

NHS-PEOn-Maleimide (n= 4, 12 and 24) cross-linkers. QDs were resuspended in RNAse free 50 

mM sodium phosphate, 150 mM sodium chloride, pH 7.2, using Saphadex G-25 gravity column 

(NAP-5, GE Healthcare). Cross-linker (1000-fold excess) was added to QDs and allowed to react 

for 2 h. Samples were filtered on a NAP-5 column (to remove excess cross-linker) into similar 

buffer supplemented with 10 mM EDTA. siRNA was treated with 0.5 M DTT for 1 h and 

filtered on a NAP-5 column into EDTA-containing buffer. A 10-fold molar excess of siRNA was 



added to the filtered QDs and allowed to react overnight at 4 °C. Using Amicon filters, product 

was filtered twice with Dulbecco’s phosphate buffered saline (PBS), twice with a high salt buffer 

(1.0 M sodium chloride, 100 mM sodium citrate, pH 7.2) required to remove electrostatically 

bound siRNA. The samples were filtered several times (~12) with PBS until the supernatant 

showed no free siRNA by UV-Vis spectroscopy (Figure S1a). The conjugation of siRNA to the 

QD was confirmed and quantified using gel electrophoresis and Fluorescence spectroscopy. The 

samples were incubated with 10 mM Glutathione for 2h at 37 °C and run on a precast 15% TBE 

gel (BioRad Laboratories) at 80 mV for 1 h. The siRNAs in the gel were stained with SYBR 

Gold (Invitrogen Inc., Carlsbad, CA). To quantify the number of siRNA on QD, the samples 

were run along with free siRNA standards on the gel. The number of siRNA was found to be 

similar for both the labile (SPDP and SMPT) cross-linkers (Figure S1b). Since, the siRNA on the 

QDs with non-labile cross-linkers cannot be reduced by glutathione, to confirm and quantify the 

amount of siRNA on the QD with NHS-PEOn-Mal cross-linkers were stained with SYBR Gold 

and measured with a fluorimeter (SpectraMax Gemini XS, Molecular Devices). Similar loading 

of siRNA was observed for both non-labile (Mal-12 and Mal-24) cross-linkers (Figure S1c). To 

assess the purity of the QD-siRNA conjugates with non-labile cross-linkers knockdown 

experiment (Figure S2) was performed with the filtrate obtained after the tenth centrifugation 

cycle of the non-labile samples.  

 

Cell Culture: 

The knockdown experiments were performed on HeLa(EGFP-Ago2) cell line generated as 

described previously.  Growth media was Dulbecco’s modified Eagle’s medium (DMEM) 



containing 4.5 g/L glucose and supplemented with 10% FBS, 500 ng/mL puromycin and 600 

µg/ml G418 for selection. One day before transfection, cells were seeded at 5 x 10
5
 cells/well in 

a 6-well plate such that they would be 95% confluent at the time of transfection. For transfection, 

QD-siRNA conjugates, free siRNA (5 µM) and non-conjugated QD were electroporated by using 

I-13 protocol (Amaxa, Gaithersburg, MD). As transfection efficiency is affected by the 

concentration of siRNA, we optimized the concentration of free siRNA that gives the most 

efficient transfection by this method of delivery (electroporation). The dose-dependent 

relationship between the Luciferase gene silencing and the siRNA concentration can be seen in 

Figure S3. A final QD concentration of 20 nM was used per well for each sample. The medium 

was changed 4 h post transfection, and cells were incubated for another 44 h before they were 

washed with PBS, lysed with passive lysis buffer (Promega), and assayed for luciferase 

expression with a Dual-Glo luciferase assay kit (Promega) on a single tube luminometer 

(GloMax, Promega). The cell lysates were also used for measuring the total protein 

concentration for each sample using the Bradford reagent (Bio-Rad, Hercules, CA, USA). Since 

the efficiencies of the free siRNA (5 µM)  and 20 nM QD-MAL-siRNA (60-80 nM siRNA 

concentration) are not directly comparable six different concentrations of free CXCR4 siRNA 

and 60-80 nM of the QD conjugated siRNA (S-QD-4-CXCR4 and S-QD-24-CXCR4) were 

electroporated in the modified Hela cells. Assessment of the luciferase activity after 48 h of 

transfection revealed that the knockdown due to the QD-conjugated siRNA was similar to the 

knockdown obtained by free siRNA at the concentration of 100 nM. The results indicate that the 

conjugates (S-QD-24-CXCR4) have comparable or marginally higher silencing efficiency 

compared to the free siRNA at similar concentrations.  

 



Stability of QD-siRNA conjugates in serum: 

The QD-siRNA conjugates (20 nM) were incubated in 10% FBS for specified amount of time at 

37 °C. The samples were then centrifuged using Amicon filters (MWCO 30,000) twice to 

remove all the free siRNA (not remaining on the NP) from the sample after serum exposure. The 

clean samples were then used for visualizing the siRNA remaining on the QD and to perform 

knockdown experiments with the conjugates after serum treatment.  For visualizing the siRNA 

remaining on the QD (after serum treatment), the filtered samples were further incubated with 10 

µM glutathione for 2h at 37 °C and analyzed by gel electrophoresis (15% TBE gel) and SYBR 

gold staining as described above. The knockdown experiments with filtered-serum-treated QDs 

were performed using a similar protocol as described above. 

 

 



 

Figure S1. (a) Purification of QD-siRNA conjugate by centrifugation. The removal of free 

siRNA was monitored in the sample by measuring the absorbance of the filterate after each cycle 

at 260 nm. (b) Amount of siRNA conjugated to the QDs using labile cross-linkers. (c) Presence 

of siRNA on QD-siRNA conjugates with non-labile cross-linkers. 

 



 

Figure S2. Luciferase knockdown by the filtrate obtained from the non-labile sample 

purification cycle.  This demonstrates that the filtration process results in highly pure siRNA 

conjugated nanoparticles and there is no free siRNAs in the nanoparticle solution, hence the KD 

obtained by the nanoparticles is due to the conjugated siRNA. 

 

 

 

 

 

 

 

 



 

Figure S3. Luciferase knockdown by various concentrations of free siCXCR4 and 20 nM S-QD-

4-CXCR4 (siRNA concentration of 60-80 nM).  This indicates that the conjugates (S-QD-24-

CXCR4) have comparable or marginally higher silencing efficiency compared to the free siRNA 

at similar concentrations. 




