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Code availability

All code to reproduce experiments and results can be found at https://github.com/aamini/chemprop.

Methods

Evidential deep learning formulations

Evidential deep learning approaches seek to directly learn prediction uncertainties by formulating learning

as an evidence acquisition process.26,27 This is achieved by training models to infer the parameters of

a higher-order evidential distribution that models the evidence behind individual predictions. That is,

individual observations of training examples lend support to this higher-order distribution, such that the

predictions of the neural network learner are represented as a distribution over the prediction likelihood

function itself. Estimates of uncertainty are then formulated using the parameters of the learned evidential

distribution and thus can be obtained directly from a single forward pass through the model.

Evidential learning is achieved through two modifications to a standard forward prediction model.

First, the network’s output layer is modified to output the parameters of the evidential distribution, rather

than a point estimate of a target label. Second, the resultant model is trained with a specific loss function

that jointly maximizes the model’s fit to the data and also minimizes its evidence on errors, i.e., increases

uncertainty when predictions should not be trusted.

Evidential learning for regression

In regression, we are given a dataset of paired training examples D = {xi, yi}Ni=1 where the targets are

assumed to be drawn i.i.d. from a Gaussian distribution with unknown mean and variance θ = {µ, σ2}. We
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seek to probabilistically estimate the mean and variance assuming that the mean is drawn from a Gaus-

sian and the variance is drawn from an Inverse-Gamma distribution. The joint higher-order, evidential

distribution is thus represented as a Normal-Inverse-Gamma. Specifically, the Normal-Inverse-Gamma dis-

tribution, p(θ|m), which is also the conjugate prior to the Gaussian,49 is parametrized by m = {γ, υ, α, β}

and represents a distribution over θ = {µ, σ2}. Therefore, in this work, the final layers of evidential D-

MPNN and atomistic networks were modified to output these Normal-Inverse-Gamma hyperparameters.

Thus, the network has 4 outputs for every target task. Given a Normal-Inverse-Gamma distribution, the

prediction and uncertainty are formulated according to the distribution moments:

E[µ] = γ︸ ︷︷ ︸
prediction

, Var[µ] =
β

υ(α− 1)︸ ︷︷ ︸
uncertainty

.

Evidential models are trained using a dual-objective loss L(x) that consists of two loss terms, to both

maximize model fit according to the negative log-likelihood and regularize evidence on errors:

L(x) = LNLL(x) + λLR(x)

where LNLL(x) is the negative log-likelihood and LR(x) is an evidence regularizer.27 The regularization

coefficient λ controls the strength of uncertainty inflation relative to model fit. All evidential models were

trained according to this loss function, with λ values specified in the figure captions and corresponding

Methods sections. We refer to the work of Amini et al. for more details on the evidential regression

formulation.27 We also note that the evidential method has been demonstrated in the context of discrete,

multiclass classification problems,26 despite the focus of this work (along with relevant prior literature in

molecular property prediction) being on continuous regression tasks.
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Network architectures

To show its broad applicability in molecular property prediction, evidential regression was integrated into

networks operating on 2D molecular graphs and 3D conformers – directed message passing neural network

(D-MPNN) and atomistic neural network models, respectively.

Directed message passing neural networks

To investigate performance on 2D molecular graphs, evidential methods were integrated into a state-of-

the-art D-MPNN model.50 The D-MPNN architecture is a variant of a message passing neural network

(MPNN). MPNNs operate on molecular graphs to first learn an encoded molecular representation (i.e.,

molecule-level feature vector) by passing “messages” between atoms and/or bonds and their direct neigh-

bors. These messages build up a hidden state for each atom and/or bond, and repeated message passing

iterations yield a molecule-level feature vector. A feed-forward network operating on this feature is used

to produce a task-specific representation of an input molecule.

D-MPNN models were implemented in PyTorch47 within the Chemprop library.50 D-MPNNs were

implemented using standard settings: messages passed on directed bonds, messages subjected to ReLU

activation, a learned hidden dimension of 300, 3 layers, no dropout, and the output of the message-

passing phase fully connected to the output layer. For evidential regression models, the final output layer

was modified to infer a single evidential distribution for each task, with each task parametrized by four

outputs (e.g., prediction of 12 tasks uses 48 outputs). Models were trained using the Adam optimization

algorithm. Target values were normalized with a standard scaler for training. For evaluations, model state

was reloaded from the epoch with the lowest validation score after training was completed.
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Atomistic neural networks

To investigate performance on 3D conformer representations, evidential regression was integrated into

the end-to-end atomistic neural network SchNet.44 Rather than operating only on the 2D graph, SchNet

instead builds internal representations of a molecule using 3D coordinate positions of each atom as inputs

to the model. SchNet employs “continuous filters”, where information is shared between molecules not

based upon discrete edges but rather continuous spatial distance between molecules (Fig. 1). This model

architecture has proved beneficial for predicting energies and forces, as it is rotationally invariant and

equivariant.44 Similar to the message passing networks, SchNet alternates between transforming atom-

wise representations individually and integrating interaction information. At the end of these internal

hidden layers, information at each atom is aggregated through summation to produce a fixed dimension

hidden representation, upon which a single feed forward layer is applied to produce an output value. In

the case of energy predictions, SchNet predicts energy at each atom separately and adds all energies to

predict the energy for the molecule. We refer the reader to the work of Schutt et al. for more details.44,51

The final layer of SchNet was modified to infer a single evidential distribution over the task of predicting

U0 for the QM9 dataset, outputting four values rather than one, corresponding to the parameters of the

higher-order evidential distribution.

Unlike in the Chemprop library, where normalization is conducted prior to any training, the SchNet

model uses a customized scaler that normalizes both according to the target values and a precomputed

“atomref” value. Instead of transforming the target values and training the model with modified target

values, SchNet adds these normalization numbers to outputs for each atom separately as part of its final

layer by default. SchNet builds up final energy values for each atom m, G(xi)m, and the final prediction

for molecule xi is computed according to:
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ŷi =
∑

m∈Atoms(xi)

[σyG(xi)m + atomrefs(xi,m) + µy]

where

µy =
1

N

N∑
i=1

1

|xi|

(
yi −

∑
m∈Atoms(xi)

atomrefs(xi,m)
)

σy =

√√√√ 1

N

N∑
i=1

(
µy −

1

|xi|

(
yi −

∑
m∈Atoms(xi)

atomrefs(xi,m)
))2

Here, SchNet tries to learn residual values at each atom. Because the evidential regression method is

most easily adapted for predicting and training on data with standard normalization procedures, a custom

standardization method was implemented to incorporate atomref values, which we found to be empirically

helpful. Specifically, the value U0 for each input molecule was adjusted before inference according to:

y′i =
y − µy −

∑
m∈Atoms(xi)

atomrefs(xi,m)
σy

At inference time, the inverse of this scaler was computed to predict ŷ. Accounting for such discrepancies

in the scaling function could provide opportunities for future development of atomistic neural network

architectures.

Datasets

Lower-N 2D datasets

The lower-N 2D datasets used in this study were extracted from MoleculeNet29 and used as prepared by

Wang et al.50 For regression tasks (Table 1), datasets of aqueous solubility (Delaney), solvation energy

(freesolv), lipophilicity (lipo), and atomization energy (QM7) were evaluated. The datasets were split
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randomly using a 80/10/10 split for training/validation/testing. SMILES strings were used as input to

D-MPNN models.

Lower-N 2D TDC Datasets

In addition to the MoleculeNet lower-N datasets, evidential regression was additionally evaluated on three

datasets from the Therapeutics Data Commons30 (TDC). For regression tasks (Table S1), datasets of

heaptocyte clearance (“clearance”),52 plasma protein binding rates (“PPBR”),52 and the lethal dosage of

drugs (“LD50”)53 were used. The datasets were extracted from the TDC and split randomly using a

80/10/10 split for training/validation/testing. SMILES strings were used as input to D-MPNN models.

Higher-N 2D datasets

For the 2D setting, the QM932,54 dataset with SMILES strings input was extracted from MoleculeNet.29

For both benchmarking and active learning D-MPNN experiments using this dataset, all 12 output tasks

of the QM9 dataset, which reflect computer-generated quantum mechanical properties,29,32 were predicted.

A ligand docking dataset based on Enamine’s Diversity Collection of 50,240 molecules was used as a second

higher-N 2D dataset. Target values consisted of docking scores of compounds against thymidylate kinase

(PDB ID: 4UNN31) using AutoDock Vina.35 This dataset was used as prepared by Graff et al.34

Higher-N 3D (atomistic) datasets

For the 3D setting, a variation of the QM9 dataset was utilized wherein atomic coordinates, not molecular

graphs generated from SMILES strings, were used as inputs. Atomic coordinates correspond to the coor-

dinates of molecular conformers in 3D space. In this setting, the single task of total formation energy at

0K, U0,51 was predicted for a given molecule input.
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Antibiotic discovery datasets

For virtual screening experiments for antibiotic discovery, D-MPNN models were trained on a dataset of

2, 335 small molecules and their in vitro growth inhibitory activity against Escherichia coli, as generated

and reported by Stokes et al.39 In this dataset, growth inhibitory activity is reported as endpoint OD600,

where lower OD600 values correspond to stronger growth inhibitory activity, and models were trained to

predict this as a continuous target (i.e., formulated as a regression problem). The Broad Drug Repurposing

Hub40 was used as a discovery dataset, as prepared by Stokes et al.39 Model predictions were compared to

empirically determined growth inhibitory activity against E. coli for a subset of molecules from the Broad

Drug Repurposing Hub, as measured by Stokes et al.39

Uncertainty quantification baselines

Evaluations are focused on regression tasks, defined by a dataset D containing data points (xi, yi) where

yi ∈ R is a scalar-valued target property and xi is a molecule representation, represented as either a

SMILES string or a set of coordinates for the 2D or 3D settings, respectively.

For baselines, we use gold-standard epistemic uncertainty quantification methods that rely on sampling,

i.e., creating a set of predictions that together constitute an ensemble from which estimates of predictive

variance can be obtained. Specifically, a set of predictions E = {G1(x), G2(x), · · · , Gn(x)}, where each

Gi(x) is an inference sample, is obtained such that the individual samples (e.g., individual model predic-

tions) can yield a final prediction defined by:

Ĝ(x) =
∑
G∈E

G(x)

n
.

As previously proposed,13,14 from the multiple samples obtained from this set of models, the uncertainty
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U(x) is defined as the variance across predictions:

U(x) =
∑
G∈E

(Ĝ(x)−G(x))2

n
.

Traditional model ensembling

For the ensemble baseline, distinct models Gi ∈ E were trained on different splits of the same training data

and initialized with different sets of randomly selected weights, as previously proposed.13 Greater variance

among model outputs reflects greater uncertainties, due to the fact that for out-of-distribution regions

not well represented in the training data, each ensemble member will be more significantly affected by its

initialization, ultimately resulting in more variable predictions. The computational cost of this approach

scales linearly with the size of the ensemble and clearly exceeds the cost of training a single model. All

evaluations utilized an ensemble size of 5.

Monte Carlo dropout sampling

For the dropout baseline, a single model G is trained with dropout, in which individual network weights

are randomly set to zero at every training step with probability p, also known as the “dropout rate”. At

inference time, a set of predictions E is obtained for an input xi by application of randomly-generated

dropout masks to a trained model G. This strategy approximates Bayesian inference and can thus be used

to obtain prediction samples from which uncertainty can be estimated.14 All evaluations utilized a dropout

rate of 0.2 and a set size of 5.
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Uncertainty benchmarking experiments

Each dataset was randomly partitioned using an 80/10/10 split for training, validation, and testing set

splits respectively. For D-MPNN experiments, test set target values were normalized using statistics from

the train set such that the train set target values have mean 0 and standard deviation 1 in each case

(atomistic normalization previously described separately).

For the D-MPNN models, each model was trained for 100 epochs using the Adam optimizer with default

parameters, and the best model was selected based upon validation loss. We use the default Chemprop

architecture and training procedure parameters as set by Yang et al.,50 including a Noam learning rate

scheduler with final learning rate of 10−4, batch size of 50, hidden size of 300, depth of 3, and ReLU

activations.

For the atomistic neural network models, the default SchNet architecture parameters and preparations

of the U0 calculations from the QM9 dataset were used. For training, the same training procedure as in

Chemprop (optimizer, learning rate, and learning rate scheduler) was used, with the learning rate in the

Noam scheduler modified to 2× 10−4, rather than 1× 10−4, for greater stability in early model epochs.

Test set predictions and corresponding uncertainties were generated in each experiment for downstream

analysis.

Error vs. confidence cutoffs

Test set predictions from each model run were sorted by uncertainty, such that ri represents the index

of the test set molecule, xri that has the ith highest predictive uncertainty (e.g., xr1 is predicted with

highest uncertainty and xrn with most confidence where n is the total number of molecules evaluated). For

every value of i, we compute the error for the set of all predicted test set molecules of {xrj : j ≥ i}. We

compute cutoff mean average error (MAE) and root mean squared error (RMSE) for different cutoff values
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i, corresponding to different confidence cutoffs (e.g., 50% confidence cutoff can be computed by setting

i = d0.5ne):

MAEi =
1

n− i

n∑
j≥i

|yrj −G(xrj)|

RMSEi =

√√√√ 1

n− i

n∑
j≥i

(yrj −G(xrj))2

Confidence cutoff errors were computed at even intervals of 30, exclusive, for all datasets except for the

lower-N datasets, in which case cutoff errors for all values of i were computed.

This procedure was repeated for different random starts of the model and random training/validation/testing

splits, corresponding to independent experimental trials (n = 10 for lower-N data, n = 5 for all else). Cut-

off values at each confidence percentile were computed separately for each random initialization in order

to estimate standard deviations over multiple trials at each confidence percentile.

In the multitask setting, cutoff errors were computed separately across each task to avoid avoid artifacts

due to averaging uncertainties across tasks. Thus, for n = 5 trials on the QM9 dataset, cutoff errors were

computed separately for each of the d = 12 tasks in each of the n trials, leading to n ∗ d = 60 computed

cutoff error values at each confidence percentile. Performance on separate tasks in QM9 is shown in Fig.

S4.

Spearman’s rank correlation coefficient

We desire that, on average, predictions for molecules made with higher certainty should also be more

accurate. Therefore, Spearman’s rank correlation coefficient was used as an additional metric to assess the

ability of models to rank errors, and was computed following the procedure outlined in Hirschfeld et al.15
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Spearman’s rank correlation coefficient is defined by creating two vectors L1 and L2 and corresponding

rank vectors rL1 and rL2 that sort the dataset in ascending order. The correlation measures the agreement

between these two ranking lists:

ρ(L1, L2) =
cov(rL1 , rL2)

σ(rL1)σ(rL2)

If these two lists are perfectly correlated, then ρ = 1, whereas if they are perfectly inversely correlated,

ρ = −1. We desire an uncertainty estimation method where ρ between error and predictive uncertainty is

highest. Spearman’s rank correlation coefficients were computed using the scipy.stats module.55

Calibration analysis & miscalibration area

In the regression case, the empirical probability of observing the true target values yi around the predicted

values ŷi should match the posterior predictive probability distribution p(ŷi) defined by the uncertainty

quantification method for a well-calibrated model.36 That is, if we create 50% credible intervals around

each predicted point value ŷi, the true value yi should fall within that credible interval 50% of the time.

To evaluate this, we assess uncertainty calibration following the procedure outlined in Tran et al.11

We assume the posterior predictive distributions to be Gaussian around the predicted point value ŷi.

We find the lower and upper bound values between which we expect to observe a fraction e of the true

values. For each data point xi, given an inverse CDF function for the predictive distribution, F−1i , we

define lower bound, Lb, and upper bound, Ub, values for each predicted point in the test set:

Lbi = F−1i (0.5− e)

Ubi = F−1i (0.5 + e)
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We count the fraction of true predictive values where Lbi < yi < Ubi, which we denote as the “estimated

confidence”. We repeat this value at various expected probability values, e, to create the calibration

plots which show the expected proportion correct e against the estimated confidence, i.e. the estimated

cumulative probability.

To quantify the degree of calibration, we measure each model’s deviation from ideal calibration by

computing the area away from the parity line in which the estimated confidence and observed proportion

correct are matched. This integration was computed using the scipy.stats.simps function.55

For the lower-N datasets, the effect of the evidential regularizer strength was determined by varying

the regularization parameter λ. Individual evidential D-MPNNs were trained with varying regularization

coefficients. Lower λ leads to overconfident predictors, whereas higher λ leads to underconfident predictions,

as they are penalized more for attributing higher evidence to erroneous predictions.

Active learning on QM9 dataset

Experiments were conducted on the QM9 dataset with the objective of improving the predictive accuracy

of the model in terms of its learning efficiency. In other words, the objective of these experiments was

to select a training dataset intelligently such that higher predictive accuracy could be achieved with less

data. Indeed, because data in the chemical sciences can often be limited and expensive to acquire, active

learning can yield powerful predictive models that require minimal data generation.

The general experimental set up consists of iterative rounds of model training, data acquisition, and

model assessment. All active learning experiments were conducted in the 2D setting using D-MPNN

models. Briefly, models were initially trained on a randomly selected subset of data from QM9, and

performance was assessed on a held-out test set and quantified via RMSE. At each iteration, m new data

samples were selected and added to the training set on the basis of an acquisition function α. Models were
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then re-trained from scratch, and performance was again assessed on the held-out test set. This process

was then repeated until the entire training dataset (consisting of 80% of all of QM9) was acquired. All

experiments were conducted with n = 10 independent trials.

Two general acquisition strategies were tested in this study: first, an explorative strategy in which the

algorithm chooses to acquire instances about which it is most uncertain, and second, a baseline strategy

in which new data instances are acquired at random. These strategies are labeled as “Explorative” and

“Random”, respectively, in Fig. 5. Evidential deep learning, model ensembling, and dropout sampling

were used as the UQ methods for explorative selection. In all three instances, the value of the acquisition

function for a particular point x is given by the estimated uncertainty: α(x) = σ̂(x). For each method,

the m samples with the greatest uncertainties were acquired at each iteration. Explorative acquisition was

compared to each method’s respective random acquisition baseline, given differences in training and model

output for each UQ approach.

Bayesian optimization on docking dataset

Bayesian optimization is an active learning approach that seeks to optimize an objective function by

iteratively selecting experiments to perform according to a model’s predictions. In this work, Bayesian

optimization was performed on a set of candidate molecules with the objective of selecting molecules that

optimize a target property f(x), in this case the ligand docking score against thymidylate kinase from

AutoDock Vina. We follow the general procedure outlined by Graff et al.34 The objective function f(x) is

calculated for n randomly-selected molecules {x}ni=1, yielding a dataset D = {(xi, f(xi))}ni=1. A D-MPNN

model is then trained on these data, and predictions f̂(x) are passed to an acquisition function α which

describes the utility of acquiring a new point. A set of m new points are subsequently selected according

to the acquisition function; the objective function for each of these points is calculated; and these points
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are used to grow the dataset D. This process was repeated iteratively for a fixed number of iterations. We

refer the reader to recent works for more details on the Bayesian optimization procedure.34,37

The following acquisition functions were tested in this study:

Random(x) ∼ U(0, 1); Greedy(x) = µ̂(x); UCB(x) = µ̂(x) + βσ̂(x).

Here µ̂(x) and σ̂(x) are the model’s predicted mean and uncertainty at point x, respectively. β = 2 for all

experiments reported in the paper.

Search trajectory performance was evaluated by the fraction of top-k scores identified during Bayesian

optimization, calculated as the size of the intersection of the list of true top-k scores and the list of top-k

scores found, then divided by k. Acquisition sample diversity was measured as the average 10-nearest

training set neighbors (10-NN) Tanimoto distance for batch samples after the first round of acquisition in

Bayesian optimization.

Uncertainty-guided virtual screening for antibiotic discovery

Evidential D-MPNNs were trained to predict a molecule’s growth inhibitory effect on E. coli, following the

general virtual screening pipeline presented by Stokes et al.39 Growth inhibitory activity was measured as

in vitro OD600 of E. coli following incubation with a compound, where lower values correspond to more

potent inhibition, and to estimate the uncertainty associated with that prediction. The evidential D-MPNN

model was trained following the procedure outlined by Stokes et al.,39 with the notable exception that the

prediction task was formulated as a regression problem. Briefly, the molecular representation learned by

the D-MPNN was augmented with 200 additional molecule-level features computed in RDKit.48 Models

were trained on the primary dataset of the OD600 (target values y) of E. coli following incubation with each
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of 2, 335 small molecules (input values x in SMILES representation) using a 80/20 training/validation split.

Models were trained for 30 epochs with five-fold cross validation and a regularization coefficient λ = 0.1.

Due to the imbalanced distribution of OD600 values in this dataset (Fig. S9A), the training dataset was

rebalanced by sampling molecules with OD600 > 0.2 with probability 0.1.

The trained evidential D-MPNN was applied to the Broad Drug Repurposing Hub40 to predict OD600

values and uncertainties for molecules in this discovery dataset. t-SNE analysis was conducted using scikit-

learn’s implementation of t-Distributed Stochastic Neighbor Embedding. Morgan fingerprints for each

molecule using a radius of 2 and 2048-bit fingerprint vectors were first computed in RDKit, and t-SNE

with Tanimoto (Jaccard) distance metric and default parameters was then used to reduce the data from

2048 dimensions to two dimensions. The distance between points in the t-SNE plots thus reflects the

Tanimoto distance of the corresponding molecules.

For the uncertainty-guided virtual screen, molecules from the Broad discovery dataset were first ranked

based on predicted OD600 values (lower is better), and the top 50 ranking molecules were downselected.

Confidence percentiles across this set were computed based on uncertainty estimates returned by the

evidential D-MPNN, and the set of 50 molecules was subsequently filtered according to varying confidence

percentiles. Specifically, for a given confidence threshold p, molecules with estimated confidences below

the associated pth percentile are removed from the list of top 50 molecules, with p ranging from the 50th to

100th percentiles of greatest predictive confidence. The experimental hit rate for both the initial set of 50

molecules (i.e., no confidence filtering) and each filtered set was determined using empirically determined

OD600 values reported in Stokes et al.39 The hit rate was defined as the proportion of molecules in each

candidate set with OD600 < 0.2 (as previously reported39) relative to the total number of molecules in

that candidate set. This screening procedure was also used for the dropout and ensemble-based baseline

methods, following training and testing on the Stokes’ training and Broad discovery datasets, respectively.

S16



Additional Results

Table S1: Extended model error at various confidence percentile cutoffs including TDC lower-N data. For a
given confidence percentile cutoff, top performing methods based on prediction standard error of the mean (± s.e.m.) are
bolded. A cutoff of 0.95 indicates that only the top 5% most confident predictions are considered. Full confidence plots for
all datasets are shown in Fig. 3 and Figs. S1, S4, S5. Mean ± s.e.m. (RMSE for all D-MPNN models, MAE for atomistic);
n = 10 independent trials for lower-N datasets, n = 5 independent trials for higher-N datasets.

Delaney Freesolv Lipo QM7 (×102)

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence

0.0 0.68 ± 0.02 0.65 ± 0.03 0.66 ± 0.02 1.00 ± 0.06 0.94 ± 0.06 0.96 ± 0.07 0.55 ± 0.01 0.53 ± 0.02 0.55 ± 0.02 1.18 ± 0.02 1.12 ± 0.02 1.15 ± 0.03
0.5 0.62 ± 0.03 0.55 ± 0.03 0.44 ± 0.01 0.79 ± 0.07 0.45 ± 0.04 0.42 ± 0.04 0.52 ± 0.01 0.40 ± 0.01 0.50 ± 0.01 0.88 ± 0.06 0.88 ± 0.06 0.39 ± 0.03
0.75 0.59 ± 0.03 0.50 ± 0.05 0.35 ± 0.02 0.85 ± 0.12 0.41 ± 0.05 0.36 ± 0.04 0.50 ± 0.02 0.38 ± 0.02 0.51 ± 0.02 0.65 ± 0.03 0.81 ± 0.06 0.23 ± 0.04
0.90 0.55 ± 0.03 0.51 ± 0.09 0.28 ± 0.02 0.66 ± 0.20 0.40 ± 0.06 0.35 ± 0.08 0.46 ± 0.03 0.38 ± 0.02 0.53 ± 0.03 0.69 ± 0.05 0.71 ± 0.11 0.10 ± 0.04
0.95 0.53 ± 0.06 0.45 ± 0.06 0.22 ± 0.02 0.75 ± 0.30 0.27 ± 0.04 0.38 ± 0.12 0.49 ± 0.04 0.36 ± 0.03 0.50 ± 0.04 0.73 ± 0.08 0.69 ± 0.11 0.10 ± 0.04

Enamine D-MPNN QM9 D-MPNN QM9 Atomistic (×10−2)

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Ensemble Evidence

0.0 3.40 ± 0.12 4.47 ± 0.18 5.60 ± 0.20 0.35 ± 0.00 0.33 ± 0.00 0.35 ± 0.00 2.04 ± 0.03 2.98 ± 0.08
0.5 3.64 ± 0.05 2.12 ± 0.02 1.55 ± 0.12 0.33 ± 0.00 0.32 ± 0.00 0.30 ± 0.00 1.45 ± 0.02 1.52 ± 0.02
0.75 3.42 ± 0.04 1.94 ± 0.04 1.04 ± 0.13 0.33 ± 0.00 0.32 ± 0.00 0.28 ± 0.00 1.36 ± 0.02 1.33 ± 0.02
0.90 3.30 ± 0.06 1.80 ± 0.03 0.63 ± 0.12 0.32 ± 0.00 0.32 ± 0.01 0.27 ± 0.00 1.31 ± 0.03 1.18 ± 0.03
0.95 3.26 ± 0.05 1.79 ± 0.05 0.42 ± 0.01 0.33 ± 0.01 0.32 ± 0.01 0.26 ± 0.01 1.29 ± 0.03 1.12 ± 0.03

Clearance LD50 PPBR

Cutoff Dropout Ensemble Evidence Dropout Ensemble Evidence Dropout Ensemble Evidence

0.0 47.45 ± 0.90 44.05 ± 0.68 5.60 ± 0.20 0.58 ± 0.01 0.56 ± 0.05 0.56 ± 0.01 11.67 ± 0.42 11.17 ± 0.40 11.35 ± 0.25
0.5 33.20 ± 2.12 38.81 ± 1.60 37.68 ± 2.35 0.50 ± 0.01 00.47 ± 0.01 0.49 ± 0.01 7.57 ± 0.68 6.42 ± 0.62 6.83 ± 0.59
0.75 30.33 ± 2.94 37.23 ± 2.94 32.02 ± 3.60 0.48 ± 0.011 0.44 ± 0.01 0.45 ± 0.02 6.47 ± 0.87 4.90 ± 0.71 4.90 ± 0.86
0.90 27.71 ± 3.62 38.87 ± 5.50 29.75 ± 5.64 0.47 ± 0.02 0.46 ± 0.018 0.44 ± 0.03 5.99 ± 1.12 4.97 ± 0.96 2.88 ± 0.87
0.95 27.94 ± 6.13 34.18 ± 5.96 25.84 ± 7.29 0.47 ± 0.03 0.47 ± 0.04 0.45 ± 0.038 5.26 ± 1.23 4.59 ± 1.24 0.91 ± 0.16
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Table S2: Statistical significance tests for Enamine 50k Bayesian optimization. Pairwise comparison of uncer-
tainty quantification methods for upper confidence bound (UCB) acquisition in Bayesian optimization on Enamine 50k data
(Fig. 5D). Fold changes (FC; mean ± s.d.) reflect the fold change between the mean percentage of top-500 scores found for
the first method listed relative to the second method listed. Significance values reflect the result of two-tailed unpaired t-tests
over n = 10 independent trials.

Evidence vs. Dropout Ensemble vs. Evidence Ensemble vs. Dropout

Ligands Explored FC p-value FC p-value FC p-value

550 0.959 ± 0.56 0.003669 0.926 ± 0.33 0.195383 0.845 ± 0.60 0.477471
775 1.052 ± 0.17 0.259450 1.144 ± 0.17 0.016443 1.196 ± 0.12 0.001081
1000 1.039 ± 0.11 0.242781 1.104 ± 0.11 0.013200 1.142 ± 0.09 0.000964
1225 1.057 ± 0.05 0.009547 1.073 ± 0.08 0.013934 1.131 ± 0.06 0.000046
1450 1.055 ± 0.05 0.007914 1.065 ± 0.06 0.007536 1.122 ± 0.05 0.000007
1675 1.056 ± 0.05 0.006281 1.045 ± 0.04 0.003669 1.104 ± 0.04 0.000010
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Figure S1: Uncertainty benchmarking and calibration for lower-N datasets. (A, B) Prediction error, measured
as MAE (A) or RMSE (B), at different confidence percentile cutoffs for D-MPNNs evaluated on each of the 2D lower-N
datasets. (C) Estimated confidence (cumulative probability) against the observed proportion correct for an evidential D-
MPNN evaluated on each of the 2D lower-N datasets, with regularization parameter λ = 0.2. Mean ± 95% c.i., n = 10
independent trials.
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Figure S2: Uncertainty benchmarking and calibration for additional lower-N Therapeutics Data Commons
datasets. (A, B) Prediction error, measured as MAE (A) or RMSE (B), at different confidence percentile cutoffs for
D-MPNNs evaluated on each of the 2D lower-N datasets. (C) Estimated confidence (cumulative probability) against the
observed proportion correct for an evidential D-MPNN evaluated on each of the 2D lower-N datasets, with regularization
parameter λ = 0.2. Mean ± 95% c.i., n = 10 independent trials.
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Figure S3: Spearman rank correlation between error and uncertainty. Spearman rank correlation coefficient between
the estimated uncertainty and the absolute error for each point across lower-N (A), additional lower-N Therapeutics Data
Commons (TDC) (B), higher-N (C), and atomistic (D) datasets. Mean ± 95% c.i., n = 10 independent trials for lower-M
and n = 5 independent trials for atomistic and higher-N datasets. For QM9 in the higher-N D-MPNN setting (C), standard
error bars are computed across all tasks and independent trials (n = 60).
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Figure S5: Uncertainty benchmarking and calibration for higher-N 2D and 3D datasets. (A, B) Prediction error,
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and 3D datasets tested. (C) Estimated confidence (cumulative probability) against the observed proportion correct for the
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Figure S8: Task-specific calibration for QM9 dataset. Estimated confidence (cumulative probability) against the
observed proportion correct is computed for an evidential D-MPNN evaluated on QM9 and then broken down into task-
specific plots. Mean ± 95% c.i., n = 5 independent trials.
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Figure S9: Antibiotic discovery datasets and uncertainty predictions. (A) Distribution of OD600 values for the
training dataset of small molecules and their in vitro growth inhibitory activity against E. coli, as originally measured by
Stokes et al.39 Lower OD600 values indicate less E. coli growth and hence correspond to greater antibiotic activity. (B)
Distribution of predicted OD600 values and evidential uncertainties for molecules in the Broad Drug Repurposing Hub
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