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Stem cells exhibit promise in numerous areas of regenerative

medicine. Their fate and function are governed by a

combination of intrinsic determinants and signals from the local

microenvironment, or niche. An understanding of the

mechanisms underlying both embryonic and adult stem cell

functions has been greatly enhanced by the recent

development of several high-throughput technologies:

microfabricated platforms, including cellular microarrays, to

investigate the combinatorial effects of microenvironmental

stimuli and large-scale screens utilizing small molecules and

short interfering RNAs to identify crucial genetic and signaling

elements. Furthermore, the integration of these systems with

other versatile platforms, such as microfluidics and lentiviral

microarrays, will continue to enable the detailed elucidation

of stem cell processes, and thus, greatly contribute to the

development of stem cell based therapies.
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Introduction
Stem cells are uniquely positioned at the foundation of

potential regenerative medicine therapies because of

their distinctive ability to undergo self-renewal com-

bined with the capacity to generate numerous differen-

tiated cell types, including progenitor and effector cell

populations. Extensive recent work has begun to delin-

eate the genomic and proteomic signatures underlying

the self-renewal and pluripotency of embryonic stem

(ES) cells as well as the multipotency of various adult

stem cell populations, and identify within these expres-

sion profiles specific interaction and regulatory networks

[1–3]. Such networks and their associated functional

phenotypes are defined and regulated through the com-
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plex interplay of intrinsic properties and signals from the

stem cell microenvironment (Figure 1). For example,

adult or somatic stem cells, which contribute to both

tissue formation in development and regeneration in

adult life, have been demonstrated to reside within

specialized niches that modulate stem cell proliferation,

influence symmetric versus asymmetric division, control

differentiation, and protect stem cells from physiologic

stresses [4�,5]. The components of the stem cell micro-

environment that regulate these processes include dis-

tinct cell–cell and cell–extracellular matrix (ECM)

interactions, localized soluble stimuli and gradients of

soluble factors, and the three-dimensional architecture of

the niche itself, which shapes and restricts the delivery of

these cues. A detailed understanding of the co-operative

involvement of these diverse environmental interactions

together with the knowledge of stem cell genetic pro-

grams will be crucial for the development of new stem

cell based therapeutic approaches, including transplan-

tation and tissue engineering schemes, stem cell targeted

pharmaceuticals, and gene delivery strategies. Thus, to

systematically probe mechanisms of stem cell function,

platforms in which stem cells can be evaluated in a high-

throughput manner have begun to be developed. Here,

we will provide examples of recent efforts utilizing such

strategies to identify microenvironmental factors and

signaling pathways important in stem cell differentiation

as well as highlight some other newly developed systems

that should be extremely useful within the context of

stem cell studies in the near future.

Microfabricated culture platforms for the
high-throughput analysis of
microenvironmental factors
In order to decouple the complex spatiotemporal cues

that cells experience in vivo, microfabrication tools have

been applied to in vitro cell culture models and have been

found to be of great utility [6]. One approach, termed

micropatterning, which has been reviewed extensively

elsewhere [7,8], has enabled the generation of patterned

heterogeneous surfaces in which cell–cell interactions,

cell–matrix interactions, and cell shape can be controlled

on the micrometer scale. Studies using this methodology

have examined, for instance, the role of homotypic and

heterotypic interactions in hepatocyte stabilization within

hepatocyte/non-parenchymal cell co-cultures [9], as well

as the relative contribution of cell spreading and cell–cell

contact in various cellular responses [10–13]. In particular,

the degree of spreading has been demonstrated to modu-

late endothelial cell proliferation versus apoptosis [10]
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Figure 1

Stem cell fate and function is regulated by a combination of intrinsic programs and signals from the microenvironment. Intrinsic determinants

can consist of both genetic and epigenetic components. For example, the molecular mechanisms underlying embryonic stem cell pluripotency

have begun to be determined, including transcriptional regulatory networks initiated by the expression of Oct4, Sox2, and Nanog, as well as the

expression of Polycomb group proteins and distinct chromatin dynamics [1]. In addition, the importance of environmental signals in stem

cell function has been highlighted by the identification of distinct stem cell niches in a wide range of organ systems [4�,5]. Overall,

high-throughput analysis of stem cells, utilizing both controlled cellular microenvironments and perturbations of intrinsic elements, can provide

substantial insight into the factors governing stem cell biology.
and the differentiation of human mesenchymal stem cells

toward either the osteoblast or adipocyte lineage [11]. In

another system, a micropatterned protein surface, pat-

terned on the subcellular length scale, has been shown to

influence immunological synapse formation and T cell

activation [14]. Collectively, these examples underscore

the usefulness of microfabrication approaches for exam-

ining biological processes through the highly controlled

regulation of environmental signals that these systems

afford. Another key feature of microfabrication tools,

broadly applicable to numerous cell types including stem

cells, is the capacity to miniaturize cell culture platforms

for parallel analysis. These high-throughput systems

enable the systematic screening of cellular processes on

a large scale, including an ability to examine the effects of

combinations of extracellular signals. One such system

recently applied to explicitly investigate microenviron-

mental regulation of stem cell differentiation is cell

microarrays.

Cell microarrays consist of printed spots of biomolecules

onto which cells are seeded [15,16]. These spots normally

include adhesive factors to retain the seeded cells, as well

as other elements for influencing cellular function or

detection of specific cellular processes. However, in

addition to simply serving a capture role, it is becoming

increasingly clear that certain adhesive factors, such as

ECM molecules, can play an important part in cellular

function through the binding of integrin receptors [17].
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Thus, specifically investigating the effect of combi-

nations of these factors in an array context is of substantial

interest. Notably, the ECM components of stem cell

niches have been suggested to be involved in retaining

stem cells within the niche and regulating stem cell

signaling and proliferation [18–22]. As a means to analyze

cellular interactions with combinatorial mixtures of ECM

molecules, an ECM microarray platform was developed

[23��]. Utilizing this system, the differentiation of ES

cells containing a b-galactosidase reporter for the fetal

liver specific gene Ankrd17 was assessed in the presence

of 32 different combinations of collagen I, collagen III,

collagen IV, laminin, and fibronectin (Figure 2). An

approximately 140-fold difference in b-galactosidase sig-

nal was observed between the least and the most efficient

conditions, suggesting that environmental matrix compo-

sition can influence early hepatic lineage specification. In

addition, since soluble factors are also important com-

ponents of the stem cell microenvironment and soluble

factor/ECM cross-talk has been suggested in many set-

tings [24,25], our group has recently extended this matrix

array platform into a multiwell format with a 96-well plate

footprint to simultaneously investigate stem cell differ-

entiation in 1200 parallel experiments representing 240

unique soluble factor/ECM environments (Flaim et al., in

press).

Another approach for exploring stem cell differentiation

with arrays of signaling molecules was demonstrated by
www.sciencedirect.com
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Figure 2

Extracellular matrix (ECM) microarray utilized to investigate embryonic stem cell differentiation toward an early hepatic lineage. (a) Alkaline

phosphatase staining of day 1 ES cultures on ECM microarrays (scale bar, 1 mm). (b and c) Bright-field micrograph of selected X-gal-stained

conditions after 3 days of culture in retinoic acid. Collagen I (C1) + collagen III (C3) + laminin (L) + fibronectin (Fn) (b) induced higher reporter activity

(arrowheads) for Ankrd17, a fetal liver specific gene, than was seen in cells cultured on C3 + L (c). Scale bars, 250 mm. Magnified views of reporter

activity: scale bars, 50 mm. (d) Hierarchical depiction of ‘blue’ image area (pooled data from four microarrays) for each of the matrix mixtures. Error

bars, SEM (n = 32). The C1 + C3 + L + Fn culture condition induced 27-fold more reporter positive image area than the C3 + L cultures. (Figure adapted

from reference [23��] with permission.)
Soen et al. [26��] and utilized printed combinations of

ECM molecules, growth factors, and other signaling

proteins. In this study, the proliferation and differen-

tiation of human neural precursor cells toward a neuronal

or glial fate was examined by quantitative image analysis

in response to these various exogenous stimuli (Figure 3).

Some of the notable findings from this work include a

dose responsive role of the Notch ligand, Jagged-1, in

shifting differentiation toward the glial fate and the

observation that co-stimulation of the Notch and Wnt

signaling pathways resulted in the proliferation of cells

exhibiting undifferentiated characteristics. Also, the pre-

sence of bone morphogenetic protein 4 induced the
www.sciencedirect.com
acquisition of a hybrid phenotype, with cells expressing

markers of both neurons and glial cells. One important

benefit of the wealth of data obtained from high-through-

put cellular arrays, which was particularly highlighted in

this work, is the ability to begin to dissect mechanistically

the responses of cells to complex environmental stimuli,

including conflicting signals. For example, the presence

of Jagged-1 appeared to exhibit dominance over other

factors in determining differentiation direction but not in

the response to mitogenic stimuli.

In contrast to the ECM array developed by Flaim et al.
[23��], which employed a polyacrylamide hydrogel sur-
Current Opinion in Chemical Biology 2007, 11:357–366
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Figure 3
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face, the array system described by Soen et al. [26��]
utilized aldehyde-derivatized glass substrates for biomo-

lecule retention. In another study, an array of growth

factor and ECM molecule combinations for neural stem

cell culture was generated using a technique based on

patterned chemically active self-assembled monolayers

[27]. Owing to the fact that mode of presentation can

modulate the function of some ligands [28,29] and mech-

anical cues have been implicated in stem cell differen-

tiation [11,30], systems that incorporate surface chemistry

or material modifications to systematically explore these

additional issues will likely be key extensions of cellular

array platforms in the future. Precedence for such

material-based systems has been demonstrated by Ander-

son et al. [31], who described a synthetic polymer

array consisting of 1700 cell–biomaterial interactions that

was utilized to identify biomaterial compositions influen-

cing human ES cell attachment, growth, and differen-

tiation.

Additionally included among the important components

of stem cell niches in numerous organ systems are the

distinct cell–cell interactions that can exist within these

specialized environments [32,33,34]. Similar to the meth-

odologies described for purified proteins, approaches that

would enable a high-throughput analysis of cell–cell

signaling could provide important clues toward a more

thorough understanding of microenvironmental regula-

tion of cellular function. For example, regarding in vitro
ES cell differentiation, the significance of cell–cell con-

tacts is demonstrated by the important role of hetero-

geneous aggregates termed embryoid bodies in the

efficient differentiation of these cells toward certain

lineages [35]. In order to better dictate cell–cell inter-

actions in ES cell culture, schemes have utilized the

fabrication of microwell substrates, both for the gener-

ation of controlled size embryoid bodies for differen-

tiation [36] and controlled size aggregates of

undifferentiated human ES cells in expansion cultures

[37,38]. Scale-up of these platforms and integration with

systems to control additional environmental stimuli

should provide substantial information regarding ES cell

functions.

One approach that is clearly amenable to high-through-

put development is microfluidics [39]. Microfluidic chan-

nels are normally formed through the casting of

polydimethylsiloxane (PDMS), a biocompatible silicone

rubber, on a micropatterned photoresist (a photosensitive

polymer). These microscale channels can be utilized for
Differentiation of neural precursor cells on a spotted array of microenvironm

(Ln) alone or Ln in combination with various other indicated factors, cells w

(GFAP, red), and neuronal differentiation (TUJ1, green). (b) High-resolution i

differentiation status of single cells. Contour plots of the probability density

BMP (bone morphogenetic protein 4), CNTF (ciliary neurotrophic factor), DL

TGFb (transforming growth factor b), Wnt (Wnt-3a). (Figure adapted from re
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cell culture and enable a large degree of control, both

spatially and temporally, over the delivery of nutrients

and other soluble mediators. For example, a recent study

utilized a microfluidic device to analyze in parallel ES

cell culture within channels with a logarithmic range of

flow rates and demonstrated that flow rate can signifi-

cantly influence colony formation [40]. Independent of

flow rate, microfluidic systems have also been used to

generate culture models exhibiting a range of oxygen

concentrations [41], as well as growth factor and chemo-

tactic gradients [42,43].

In addition, incorporation of hydrodynamic traps within

microfluidic channels has been utilized as a means to

create an ordered individual cell array [44]. Recently,

there has been a growing interest in examining the

functional characteristics of single cells as opposed to

often heterogeneous bulk populations. This is particu-

larly true for stem and progenitor cells for which clonal

analysis is the most rigorous assessment of cellular poten-

tial [45]. Specifically, experiments examining the fate of

single cells have proven to be crucial in examining stem

cell self-renewal capacity and lineage restriction, and in

identifying factors influencing proliferation and differen-

tiation [46–49]. However, the analysis of individual stem

cells within standard (96-well or 384-well) multiwell

formats can be inefficient and time consuming and

may not provide the necessary number of data points

required in some studies. In order to examine clonal stem

cell function in a high-throughput manner, microfabrica-

tion tools were used to create an array of approximately 10

000 microwells (Figure 4) [50]. The well dimensions were

configurable, ranging from 10 to 500 mm in height and 20

to >500 mm in diameter. This system was exploited to

analyze the proliferation dynamics of adult neural pro-

genitor cells and confirmed the heterogeneous nature of

this proliferation response [51]. Collectively, platforms

that enable high-throughput analysis of individual stem

and progenitor cells will provide key insights into the

differentiation potential of prospectively isolated sub-

populations, possible stochastic variations, and the further

examination of microenvironmental regulation of stem

cell functions.

Notwithstanding the crucial role of environmental cues in

stem cell function, these complex extracellular signals

interact with and are interpreted by cell intrinsic net-

works that can significantly influence responses. In the

next section, we discuss high-throughput approaches for

identifying and modulating intrinsic cellular properties
ental signals. (a) Following 70 h culture on an array containing laminin

ere stained for markers of proliferation (BrdU, blue), glial differentiation

maging of multiple parameters enabled the quantification of the

of cells in response to a selection of stimuli are shown. BMP-4 or

L-4 (delta-like protein 4), Jag (Jagged-1), Shh (sonic hedgehog),

ference [26��] with permission.)
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Figure 4

Microwell platform for examining stem cell fates. (a) A low magnification image to illustrate the scale of the system. (b) A higher magnification image of

(a) in which distinct cells can be seen. (c) A high numerical aperture (NA) image of a single well. This image was taken with an oil immersion

100� objective to demonstrate the compatibility with high NA objectives. (d) Higher magnification image of an area outlined in white in (b). Scale

bars (a and b): 500 mm; (c and d): 100 mm. (Figure adapted from reference [50] with permission.)
utilizing technologies such as small molecules, RNA

interference (RNAi)-mediated gene silencing, and other

genetic strategies.

High-throughput manipulation of intrinsic
cellular programs
Small molecule screens have proven to be important in

cell manipulation and signaling pathway analysis, and

have also formed the basis for the development of many

novel clinical agents [52,53]. For stem cells, various

synthetic and natural small molecules have been shown

to influence the processes of self-renewal and differen-

tiation [54]. In a recent study, multiwell high-throughput

analysis was performed utilizing a library of 50 000

compounds to find compounds that promoted the self-

renewal of mouse ES cells in the absence of supportive

feeder cells and without exogenously added leukemia

inhibitory factor (LIF) [55�]. From this screen, a class of

compounds, 3,4-dihydropyrimido[4,5-d]pyrimidines, was

initially discovered that maintained the undifferentiated

state of these cells, which subsequently led to the identi-

fication of an analog, termed SC1, that exhibited both

higher activity and lower toxicity. Experiments aimed at

elucidating the underlying mechanism suggested that

SC1 acts through the inhibition of RasGAP and ERK1

signaling pathways.
Current Opinion in Chemical Biology 2007, 11:357–366
Analogous to the protein-based systems described above,

small molecule screening assays have also recently been

adapted to a microarray format. In one approach, com-

pounds were localized to arrayed regions on a surface

before cell seeding through their encapsulation and slow

release from microscale biodegradable poly-(D),(L)-lac-

tide/glycolide (PLGA) scaffolds [56]. In another design,

an agarose gel sheet containing cells was overlaid onto an

array of small molecules to identify factors that bind to a

dopamine receptor and increase intracellular calcium

levels [57]. Although these types of systems remain

primarily proof-of-concept demonstrations at this stage,

their potential utility toward the future identification of

molecules affecting the function of a wide range of

primary cells, including stem cells, is extensive.

Concomitant with the development of small molecule

platforms, high-throughput RNAi screens are similarly

emerging as important tools in many cell and develop-

mental biology contexts [58�]. For instance, in a recent

study examining ES cell function, a subtractive library

approach identified multiple genes involved in the regu-

lation of Oct-4 expression and self-renewal [59]. In

addition to more conventional multiwell approaches,

several recently developed methodologies may offer

advantages in screening efficiency. One method, referred
www.sciencedirect.com
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Figure 5

Lentiviral microarrays for high-throughput screening of gene function. Illustrated is a microarray printed with an alternating pattern of lentiviruses

expressing either GFP or short hairpin RNA specific for lamin A/C and subsequently seeded with HeLa cells. Hoechst staining of nuclei (blue), anti-

lamin A/C immunofluorescence (red), and GFP fluorescence (green) are displayed as indicated. Right panel, higher magnification image of a selected

region of the array (boxed). Scale bars, left (1 mm); right (200 mm). (Figure adapted from reference [67��] with permission.)
to as an siRNA bar-code screen, employs a short hairpin

RNA (shRNA) library with each vector carrying a unique

19-mer oligonucleotide. After transfection and exposure

to a selectable stimulus (e.g. drug exposure, differen-

tiation, migration, etc.), the bar-code sequences are recov-

ered by polymerase chain reaction (PCR) and hybridized

to an oligonucleotide array to determine relative abun-

dance of each sequence. This approach has been used to

identify anticancer drug targets [60�], tumor suppressors

[61], and components of the p53 pathway [62]. In

addition, as a means to enhance throughput and minimize

reagent requirements of RNAi screens, miniaturization

using microarray strategies has also been explored. Var-

ious permutations of these systems have utilized arrayed

double stranded RNAs [63], small interfering RNAs

(siRNAs) [64,65], or vectors encoding shRNAs [66]. To

extend the application of these systems to mammalian

cell types for which transfection can be difficult, such as

nondividing primary cells, Bailey et al. [67��] recently

described the fabrication of lentiviral microarrays

(Figure 5). This system was compatible with a range of

primary and transformed cell types and was also shown to

be useful for so-called high-content screening, such as

the detection of subcellular changes including protein

localization. Furthermore, both the delivery of siRNAs

and cDNAs for overexpression could be performed in

parallel.

Together with RNAi-mediated gene-silencing appro-

aches, additional high-throughput strategies aimed at

genome-wide analysis are becoming increasingly utilized,

in particular, in stem cell biology. For example, large-

scale gene trapping techniques have been used to gen-

erate ES cell lines and subsequent mouse models with a
www.sciencedirect.com
wide range of single gene mutations [68,69]. Also, a

genome-scale gain-of-function screen coupled with gene

expression profiling identified a host of genetic elements

that may be important for ES cell self-renewal [70].

Overall, as the genomic and proteomic signatures of

various stem cell populations continue to be identified,

high-throughput approaches for the manipulation of

intrinsic genetic and signaling programs will continue

to be important in the interpretation of the mechanisms

of stem cell function.

Conclusions
A more thorough understanding of the pathways govern-

ing both embryonic and adult stem cell functions has

been facilitated by the development and application of

several high-throughput platforms. These include min-

iaturized cell-based assays (e.g. cell microarrays), which

have provided insight into the important roles of micro-

environmental signals such as extracellular matrix, growth

factors, and other signaling proteins in stem cell differ-

entiation. Notably, one of the major benefits of these

systems is the ability to efficiently analyze the effects of

combinations of extracellular signals. Consequently, the

convergence of immobilized protein-based platforms

with tools to control the soluble milieu, biomechanical

influences, and cell–cell interactions would enable an

unprecedented control over the design of ex vivo stem

cell microenvironments and greatly aid investigations of

stem cell function. Moreover, together with factors

derived from the analysis of microenviromental influ-

ences, the identification of factors that can modulate

the intrinsic regulatory networks of stem cells (e.g. small

molecules, siRNAs) could be equally important in pro-

viding fundamental insights and serving as the foundation
Current Opinion in Chemical Biology 2007, 11:357–366
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for stem cell therapies. In the future, such therapies could

be broadly applicable to a wide range of degenerative

diseases as well as the potential selective targeting of

cancer stem cells in various malignancies.
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