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Abstract

Efforts in the interdisciplinary field of bioengineering have led to in-
novative methods for investigating the complexities of cell responses in
vitro. These approaches have emphasized the reduction of complex mul-
ticomponent cellular microenvironments into distinct individual signals
as a means to both (a) better construct mimics of in vivo microenviron-
ments and (b) better deconstruct microenvironments to study them.
Microtechnology tools, together with advances in biomaterials, have
been fundamental to this progress by enabling the tightly controlled
presentation of environmental cues and the improved systematic analy-
sis of cellular perturbations. In this review, we describe bioengineering
approaches for controlling and measuring cell-environmental interac-
tions in vitro, including strategies for high-throughput analysis. We
also describe the mechanistic insights gained by the use of these novel
tools, with associated applications ranging from fundamental biological
studies, in vitro modeling of in vivo processes, and cell-based therapies.
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INTRODUCTION

Since the earliest days of cell culture, investiga-
tors have strived to establish improved in vitro
models that capture the most relevant aspects
of in vivo physiology. Through this iterative
process, in vitro culture platforms have been
adapted continually to better recapitulate in
vivo contexts and deconstruct complex mech-
anisms underlying cell and tissue processes.
In particular, it is increasingly appreciated
that cellular fate and function are regulated by
the integration of both chemical and physical
signals present within cellular microenviron-
ments. Such environmental cues are presented
to cells in the form of soluble factors, including
growth factors and hormones, or as insoluble
stimuli, such as cell-cell interactions and

extracellular matrix (ECM) components. The
importance of microenvironmental regulation
in cell function is emphasized by the many cell
types that display rapid phenotypic instability
following isolation from their in vivo environ-
ment (Anderson et al. 1970, DeLeve et al. 2004,
Guguen-Guillouzo & Guillouzo 1983, Guidry
1996, Lacorre et al. 2004, Russ et al. 2009).
Over the past two decades, multidisciplinary
efforts in cell biology and bioengineering have
led to highly functional in vitro culture plat-
forms that enable the controlled presentation
of microenvironmental signals. In this review,
we discuss recent work toward the development
of bioengineering methods for manipulating
and measuring cell-environmental signal inter-
actions as well as the role of these interactions
in dictating cell function. We focus specifically
on approaches at the interface between cell
biology, microfabrication technologies, and in
vitro tissue engineering applications, although
additional parallel advances in computational
analysis and imaging tools have been critical
for progress in the field. We refer the reader
to several recent reviews on these topics
(Deisboeck et al. 2011, Huang et al. 2009,
Kirouac & Zandstra 2006, Peltier & Schaffer
2010, Pepperkok & Ellenberg 2006, Wessels
et al. 2010).

Tissues are hierarchical and contain mi-
croarchitectural features that can be studied
at many length scales. These include the
subcellular/cellular scale (1–10 μm), which
influences cell function; the multicellular scale
(10–100 μm), which dictates the type and
degree of intercellular interactions; and the
tissue scale (100–1000 μm), which corresponds
to the functional units of tissues (Figure 1).
Here, we discuss seminal studies and current
methods that address each of these levels of tis-
sue hierarchy. We first focus on 2D platforms
leveraging microfabrication tools that are
designed to decouple complex spatiotemporal
cues, including cell-cell interactions and other
combinatorial signals. We then discuss the
importance of mechanical properties of the
microenvironment and approaches for probing
the mechanical regulation of cellular function.
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Mechanical

Cellular/subcellular scale
1–10 μm
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Heterotypic

Figure 1
Hierarchical structural features in tissues. At the cellular/subcellular scale, soluble factor signaling, adhesive
interactions with extracellular matrix and adjacent cell membrane proteins, and mechanical stimuli regulate
cell functions. At the multicellular scale, the degree of homotypic and heterotypic cell-cell interactions can
greatly influence cell fate and function. At the tissue subunit scale, the combinatorial effects of multicellular
interactions, extracellular matrix environments, and the collective 3D architecture dictate tissue functions. A
range of bioengineering methods has been developed to examine structure-function relationships at each of
these length scales.

Next, we discuss the challenges in the devel-
opment and assessment of 3D culture models
as well as recent advances in the engineering of
biomaterials, which provide improved control
of biological signal presentation and tissue
architecture. We also describe the utility of
flow-based systems for both scaling up and scal-
ing down in vitro cultures. Finally, throughout
the review we briefly highlight key biological
insights gained by the application of these
novel tools, and we conclude with an overview
of current challenges and future directions.

MICROFABRICATED
TWO-DIMENSIONAL
PLATFORMS AND ARRAYS

Controlled Cell-Matrix
and Cell-Cell Interactions

A broad range of microfabrication approaches
have been applied toward the tightly controlled
analysis of cell-matrix and cell-cell interactions
(Figure 2a,b). In standard 2D monolayer
cultures, homogeneous surfaces are used as a
substrate for the adhesion of randomly seeded

cells. Initial groundbreaking efforts integrating
tools commonly utilized in the semiconductor
industry for circuit fabrication were focused on
methods to control the surface positioning of
ECM proteins with micrometer-scale resolu-
tion in a process termed micropatterning (Kane
et al. 1999, Singhvi et al. 1994). Such patterning
can be achieved by exposing photosensitive
materials to UV radiation through a patterned
mask, in a method called photolithography,
or through the transfer of molecules to a
surface using a biocompatible silicone rubber,
polydimethylsiloxane (PDMS), in a method
referred to as soft lithography. In soft lithog-
raphy, PDMS components are molded with
microscale resolution from a silicon master
template fabricated previously with pho-
tolithography techniques, and then they are
used as a stamp to pattern molecules or
hydrogels, such as agarose, polyethylene glycol
(PEG), or polyacrylamide, on a target surface.
Micropatterned substrates have facilitated ex-
tensive investigations of cell-ECM interactions
and the influence of cell shape on cell function
by enabling the independent modulation of
cell-ECM contact and cell spreading (Chen
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a

c

bCell shape

Cell function

Cell-cell
interactions

Extracellular
matrix

interactions Dynamics
Microcontact printing Microwells

Stamp Mold

Actuatable surface

Dynamic surface chemistries Mechanically reconfigurable

Array spotting Inkjet printing Microwell arrays

Figure 2
Microsystems for the systematic analysis of cell-cell and cell-matrix interactions. (a) Microfabrication tools that enable the 2D
patterning of extracellular matrix (ECM) molecules have been developed to deconstruct the effects of cell shape and ECM interactions
on cell functions. In addition, microfabricated substrates have been utilized to precisely control cell-cell interactions in vitro as well as
to assess the influence of homotypic and heterotypic interactions and the dynamics of these processes. (b) Soft-lithography techniques,
incorporating patterned polydimethylsiloxane (PDMS) substrates, can be used to generate micropatterned 2D surfaces through a
microcontact printing (i.e., stamping) process as well as 3D microwell structures through the molded polymerization of hydrogels (top).
Dynamic systems, such as actuatable surface chemistries and reconfigurable devices, are utilized for establishing patterned cocultures of
two or more cell types as well as for investigating the dynamics of cell-cell and cell-matrix interactions (bottom). (c) Cellular microarrays
can enable the high-throughput analysis of cell-environmental interactions, drug screening, and clonal heterogeneity. Various
approaches, including the spotting of biomolecules, printing of cells within 3D hydrogels, and microwell fabrication, have been
developed and employed for high-throughput studies.

et al. 1997). Subsequent studies building on
this approach have explored the association
of cell geometry and intracellular mechanics
with cellular fates. For example, cell shape
and the degree of cell spreading have been
demonstrated to regulate cytoskeletal tension
and Rho GTPase signaling in mesenchymal
stem cells, which acts to influence their lineage
commitment (Gao et al. 2010, Kilian et al.
2010, McBeath et al. 2004, Wang et al.
2011b). Patterning of adhesive domains with

subcellular resolution has provided insights
into the processes of focal adhesion formation
and integrin activation (Arnold et al. 2004,
Goffin et al. 2006). Microfabricated substrates
have also demonstrated the effect of cell shape
on the orientation of cell divisions (Minc et al.
2011, Thery et al. 2005).

Micropatterning tools also have been
utilized widely for the precise 2D positioning
of cells as an approach to control the degree
of cell-cell interactions, both homotypic
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(same cell type) and heterotypic (different
cell types) interactions. For example, Nelson
& Chen (2002) used micropatterning ECM
islands with a specified range of diameters
as an approach to modulate adherent cells’
homotypic interactions with neighboring cells
and to systematically explore effects on cell
function. In recent work, Tseng et al. (2012)
used micropatterned fibronectin surfaces to
demonstrate the influence of ECM interactions
on the positioning of intercellular junctions as a
result of mechanical effects. Numerous studies
have examined interactions with the mechan-
ical properties of the cell microenvironment,
which we discuss in detail below. As an ap-
proach to decoupling the influence of cell-cell
contact from that of cell-spreading effects,
Nelson & Chen (2002, 2003) used bowtie-
shaped agarose microwells to investigate
homotypic interactions between two adjacent
cells, which revealed mechanisms underlying
processes of cell proliferation and apoptosis.
Furthermore, microwell systems, together
with micropatterned ECM islands or modified
suspension culture methods, have been utilized
widely for the formation of embryonic stem
(ES) cell aggregates (embryoid bodies) with
controlled diameters, in a series of studies that
has highlighted the role of embryoid body size
and cell-cell interactions in ES cell differen-
tiation (Bauwens et al. 2008; Carpenedo et al.
2007; Hong et al. 2010; Khademhosseini et al.
2006a,b; Moeller et al. 2008; Mohr et al. 2006;
Niebruegge et al. 2009; Peerani et al. 2007).

In addition to single–cell type systems, mi-
crotechnology approaches have been exploited
in the analysis of interactions between distinct
cell lineages. For instance, micropatterned
cocultures of hepatocytes and stromal cells,
fabricated with either photolithographic or
soft lithographic methods, have been used
to assess the relative roles of homotypic and
heterotypic interactions in phenotypic sta-
bilization in vitro, which has demonstrated
that a balance of these different interaction
signals supports optimal hepatocyte function
(Bhatia et al. 1999, Khetani & Bhatia 2008). By
promoting the long-term in vitro stabilization

of hepatocytes, particularly human hepato-
cytes, such an approach has enabled studies
investigating drug metabolism, hepatocellular
toxicity, and hepatotropic pathogens (Khetani
& Bhatia 2008, Ploss et al. 2010). Notably,
the selective adhesion of hepatocytes to the
patterned ECM is a key determinant for
the fabrication of micropatterned hepatocyte
cultures. Overall, the generation of patterned
2D cocultures of two or more cell types
requires clear selective adhesion characteristics
of the cells of interest or alternative strate-
gies for directly positioning the cells or for
the sequential modification of surfaces. For
example, dielectrophoresis methods, which
are based on the induction of dipole moments
in cells within nonuniform electric fields,
have been used to position cells for patterned
cocultures (Suzuki et al. 2008). Additionally,
microfluidic systems, discussed in more detail
later in this review, have shown utility for the
simultaneous patterning of multiple cell types
with defined 2D positioning and intercellular
boundaries (Chiu et al. 2000, Khademhosseini
et al. 2005, Torisawa et al. 2009). Stencils
containing micrometer-scale holes of modular
dimensions, typically fabricated using PDMS
or parylene, have also been demonstrated as an
effective patterning tool, as they form a physical
barrier that restricts cell interaction and adhe-
sion to specific, defined substrate regions (Cho
et al. 2010, Folch et al. 2000, Ostuni et al. 2000,
Wright et al. 2008). To modulate surface prop-
erties sequentially, many approaches have been
developed on the basis of electrical (Chan et al.
2008, Fan et al. 2008, Kaji et al. 2004, Li et al.
2007b, Shah et al. 2009, Yousaf et al. 2001),
light (Dillmore et al. 2004; Kikuchi et al. 2008,
2009; Ohmuro-Matsuyama & Tatsu 2008;
Petersen et al. 2008), or thermal actuation
(Tsuda et al. 2006, Yamato et al. 2001). Al-
though each of these systems has unique design
parameters and capabilities, generally the
active regulation of surface hydrophobicity or
adhesion peptide/protein presentation patterns
is used to facilitate the sequential addition of
multiple cell types in a spatially controlled
manner.
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Actuatable systems have been utilized not
only as a method for initiating patterned
cocultures but also as an approach for the tem-
poral modulation of cell-matrix and cell-cell
interactions and, therefore, investigations into
the dynamics of cellular responses. Examples
include the electrochemical modification of
self-assembled monolayers, which has been
employed as a method to initiate protein
adsorption and to switch a nonadhesive region
surrounding previously adherent cells into
an adhesion-competent region for migration
studies ( Jiang et al. 2005, Yousaf et al. 2001).
A self-assembled monolayer–based approach
also has been utilized for the electrochemical
release of adhesive peptides from a substrate,
which can act as a trigger for cell detachment
and temporally controlled removal of cells
from the culture (Yeo et al. 2003). In another
approach, Okano et al. (1995) used heating of
thermally responsive polymers, such as poly(N-
isopropylacrylamide), to release cell sheets or
spheroids from a culture surface, and Cheng
et al. (2004) explored strategies incorporating
localized heating with microfabricated systems
for improved spatial control. Mechanically ac-
tuated substrates have also been developed for
the analysis of dynamic processes. Specifically,
Hui & Bhatia (2007) modified microfabricated
silicon devices consisting of two interlocking
components to mediate cell attachment, and
each was seeded independently with a cell type
of interest. As part of the device design, the
components can be positioned into and out
of two distinct configurations, one in which
cells make contact and one in which they are
separated by an 80-μm gap. This platform
has been utilized for probing the dynamics
of cell-cell contact and short-range paracrine
signals in hepatocyte–stromal cell interactions
(Hui & Bhatia 2007, March et al. 2009). Col-
lectively, the development of microfabrication
technologies with progressively improved
spatial and temporal control within in vitro
culture platforms should continue to provide
novel strategies for deconstructing complex
cell-cell interaction mechanisms.

Cellular Microarrays
In addition to the precise control of en-
vironmental signals, microtechnology tools
can be adapted for high-throughput parallel
analysis (Figure 2c). These high-throughput
approaches can facilitate the systematic screen-
ing of cellular responses with substantially im-
proved statistical power, together with the ca-
pability to explore a range of combinations
of signals or perturbations inaccessible with
other techniques. Cellular microarrays repre-
sent one such high-throughput approach, in
which live cells are printed directly into an
array pattern or seeded onto printed spots of
biomolecules. Printed cell arrays, typically con-
sisting of cells encapsulated within hydrogel
droplets, have been explored as platforms for in-
vestigating the effects of biomaterial properties
( Jongpaiboonkit et al. 2008), cell-cell interac-
tions (Fernandes et al. 2010, Xu et al. 2011),
and small molecules (Kwon et al. 2011, Lee
et al. 2008). For example, a dual-array sys-
tem, in which cellular microarrays are treated
with a complementary stamp array containing
combinations of drug metabolism enzymes (cy-
tochrome P450 isoforms) and their metabo-
lites, has shown utility for examining cytotoxic-
ity profiles (Lee et al. 2008). In other strategies,
arrayed spots of biomolecules generated with
either contact printing or various piezoelectric
(inkjet)-based methods have formed the foun-
dation for a broad spectrum of investigations.
In these systems, the spots typically include ad-
hesive components to retain cells, in addition
to combinations of other factors to stimulate
cells or elements for detecting and measuring
cellular processes. In particular, microarrays of
ECM molecules have revealed substantial ef-
fects of combinatorial ECM presentation on
cellular functions. Initial experiments in this
area demonstrated the capabilities of an ECM
microarray approach by focusing on the influ-
ence of ECM combinations on hepatocyte ad-
hesion and survival, the early differentiation of
ES cells, and notable synergistic or antagonis-
tic effects of ECM components (Flaim et al.
2005, 2008). Subsequent studies have employed
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arrayed ECM proteins for investigating a range
of cell types (Brafman et al. 2009a,b; Huang
et al. 2010; Mei et al. 2008; Woodrow et al.
2009), and efforts to expand the throughput of
ECM microarrays should continue to provide
insights into the underlying role of ECM in
processes such as stem cell differentiation and
tumor metastasis.

In addition to ECM molecules, printed ar-
rays containing combinations of growth factors
or cell-surface ligands have provided clues into
how cells, particularly progenitor cell types, re-
spond to complex extracellular signals. For ex-
ample, the effect of the Notch ligand, Jagged-
1, on the differentiation of neural (Soen et al.
2006) or mammary (LaBarge et al. 2009) pro-
genitor cells was shown to be dependent on
the context of the combinatorial stimuli, specif-
ically, the presence or absence of Wnt or
ECM proteins, respectively. Cellular microar-
rays based on spotted biomaterial libraries have
also been explored and have provided key infor-
mation regarding the effect of polymer back-
bone chemistries and end-group functional-
ization on pluripotent and multipotent stem
cell proliferation and differentiation (Ander-
son et al. 2004, Benoit et al. 2008, Mei et al.
2010, Saha et al. 2011, Unadkat et al. 2011,
Zhang et al. 2009). The extensive empirical
data obtained from high-throughput material
screens can offer an understanding of cell-
material interactions that is difficult to pre-
dict a priori. In parallel with the advances in
presenting extracellular signals within microar-
ray formats, the development of lentiviral mi-
croarrays has been applied toward the miniatur-
ization of RNA interference screens (Wheeler
et al. 2005) and is being explored currently
as a tool for high-throughput functional ge-
nomics. Finally, for some applications, cellu-
lar microarrays have been developed to include
detection schemes as a way to monitor cellu-
lar processes within an array format. For ex-
ample, antibody or aptamer-based approaches
have been integrated for detecting the secre-
tion of specific proteins (Chen et al. 2005, Ge
et al. 2010, Liu et al. 2011, Tuleuova & Revzin
2010).

Arrays of microwells have also been utilized
widely for the high-throughput analysis of cel-
lular functions. Specifically, microwell systems
have found great utility in the assessment of the
clonal heterogeneity of stem and progenitor
cells as well as in studies focused on suspension
cell types such as lymphocytes and hematopoi-
etic stem cells, for which the 3D structure
of the microwell maintains the seeded cell
and progeny within the array (Charnley et al.
2009). Microwell arrays have been fabricated
through direct etching of silicon or glass, by
photopolymerization methods, and/or through
soft-lithography-based molding of hydrogel
materials. In one application, Wood et al.
(2010) used microwell arrays fabricated in
agarose for trapping single cells and perform-
ing high-throughput “comet” assays for DNA
damage. Based on the material properties of
the microwell platform, microwells can be
functionalized with biomolecules, and in an ap-
proach analogous to the printed array systems
described above, the effect of extracellular niche
signals can be examined (Gobaa et al. 2011).
Lutolf et al. (2009) used such an approach to in-
vestigate in vitro self-renewal of hematopoietic
stem cells as well as the regulation of this pro-
cess by recombinant protein signals, including
Wnt3a and N-cadherin. A microwell approach,
together with a cytokine detection method
termed microengraving (Han et al. 2010), also
has revealed functional heterogeneity within
lymphocyte populations, such as the unrelated
capacities for cytolysis and IFN-γ secretion
in individual CD8+ T cells (Varadarajan
et al. 2011). Similarly, microwell arrays have
been utilized for examining individual B cell
stimulation responses and for the detection of
antigen-specific antibody-secreting cells ( Jin
et al. 2009, Yamamura et al. 2005). Other tech-
niques, such as PCR, have been incorporated
into microwell systems for integrated genomic
analysis (Lindström et al. 2009). Microwells,
hydrodynamic traps, and various channel
configurations also have been incorporated
into microfluidic devices as a means to create
cellular arrays in which soluble stimuli can
be controlled precisely (Di Carlo et al. 2006,

www.annualreviews.org • Engineering Tools for Cellular Analysis 391

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
12

.2
8:

38
5-

41
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

2/
17

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



CB28CH15-Bhatia ARI 5 September 2012 17:1

King et al. 2008, Lecault et al. 2011, McKenna
et al. 2011). Further, the coupling of cellular
array approaches with time-lapse imaging
systems has highlighted important dynamic
properties, such as proliferation kinetics and
gene expression, for individual or small groups
of cells (Albrecht et al. 2010, King et al. 2007,
Lutolf et al. 2009). Overall, cellular microar-
ray platforms can provide unprecedented
throughput for systematically deconstructing
the multicomponent signals regulating cellular
function.

Manipulation and Measurement of the
Mechanical Environment

Several landmark studies have demonstrated
that the mechanics of an in vitro environment

Stiff
substrate

Compliant
substrate

a b

Micropost

Cell-substrate
adhesions

5 μm

20 μm15 nN

c  Displacements d

Figure 3
The mechanical microenvironment. The mechanical environment of 2D
substrates can be manipulated either (a) by changing the material properties of
the substrate or (b) by varying the height of microposts within microfabricated
systems. Both methods allow for direct measurement of forces exerted by
attached cells. For example, (c) beads can be implanted inside substrates for
traction force microscopy, and (d ) the deflection of labeled microposts can also
yield analogous data on cellular forces. Figures adapted with permission from
Sabass et al. (2008) and Yang et al. (2007).

dictate cell function (Discher et al. 2005,
Engler et al. 2006, Wang et al. 1993). Hence,
such culture substrates require computable
if not tunable mechanical properties. The
property reported most often is the stiffness of
the 2D substrate. Increasing substrate stiffness
appears to increase the activation of integrins
upon their binding, the degree to which cells
spread and flatten against the substrate, and the
activation of myosin-dependent stress (Fried-
land et al. 2009, Fu et al. 2010). Changes in
cell attachment and morphology in response to
substrate stiffness can be observed visually, but
measuring the stress generated by cells requires
additional manipulation of the substrate. Most
methods for measuring stress use a constitutive
equation to calculate stress fields from substrate
deformation, though biosensors are becom-
ing an increasingly abundant option. The
following section details multiple platforms
developed not only to alter the mechanical
properties of the extracellular environment but
also to measure the intracellular generation
of mechanical stress and transmitted force
(Figure 3).

Traditionally, cells are grown on either glass
or polystyrene, which have fixed elastic moduli
greater than most in vivo tissue microenviron-
ments, excluding bone. Depending on the con-
centration of the acrylamide and bisacrylamide
cross-linker, the stiffness of a polyacrylamide
substrate can be tuned to values between tens
of pascals and hundreds of kilopascals (Wang &
Pelham 1998, Yeung et al. 2005), which covers
the range of in vivo soft tissue elastic moduli
from brain (0.2–1 kPa) to fibrotic tissue (20–
60 kPa) (Discher et al. 2009). Cells also can be
seeded on polymerized gels of native proteins
including fibrin, collagen, and Matrigel (Hong
& Stegemann 2008, Kubota et al. 1988, Stege-
mann & Nerem 2003). Though these proteins
have the advantage of being present in vivo,
their multiple caveats include nonlinear elastic
and viscoelastic properties, large pore sizes sus-
ceptible to migration, and difficulty with tun-
ing stiffness values. Cross-linked hyaluronan,
a native proteoglycan, overcomes these disad-
vantages with tunable elasticity, pore size, and
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stiffness ranging from 10 to 650 Pa (Burdick &
Prestwich 2011). Hyaluronan also can be for-
mulated to be degradable, similar to synthetic
substrates of PEG (Mann & West 2002) and
dextran (Levesque & Shoichet 2007). PDMS
is a synthetic substrate with an elastic modulus
that can be tuned between 5 kPa and 2 MPa
(Prager-Khoutorsky et al. 2011). Unlike the
other substrates mentioned, PDMS does not
require hydration and is convenient for soft
lithography techniques.

In addition to changing the native stiffness of
the material itself, one can also alter the rigidity
of the substrate by modulating the geometry
through the application of microtechnology
approaches. Specifically, by molding PDMS
to form arrays of slender vertical posts, it has
been demonstrated that the dimensions of the
posts (e.g., height) can be used to vary substrate
rigidity (Fu et al. 2010, Ghibaudo et al. 2011,
Schoen et al. 2010, Yang et al. 2011). Using
this system, studies have demonstrated changes
in cell spreading, focal adhesion assembly, and
stem cell differentiation, as have been reported
previously to occur on polyacrylamide gels
of different stiffness (Tserepi et al. 2005). An
important distinction between this geometric
approach and the cross-linking approach to ma-
nipulating stiffness is that the latter also impacts
nanoscale structure, gel hydration, permeabil-
ity to growth factors, and ligand presentation.
The former impacts only micrometer-scale
rigidity sensed between neighboring adhe-
sions, which suggests that this microscale
rigidity is what cells transduce to impact cell
function.

Micropillar systems also have the advantage
of allowing explicit measurement of the stress
exerted by cells. The deflection of the pillars
correlates directly to stress applied by the cell
at the cell-substrate adhesions (Li et al. 2007a).
In a similar manner, polyacrylamide substrates
can be embedded with fluorescent beads to
illuminate cell forces through a method called
traction force microscopy (Lee et al. 1994).
Because polyacrylamide is an elastic solid,
the stress exerted by the cell can be derived

from the displacement of the beads. However,
mathematical models are required to relate the
deformation field of the beads to the applied
stress (Wang & Lin 2007). Initial studies
utilized a Boussinesq solution (Lo et al. 2000),
which relates the deformation of an infinite
medium to a point load. However, because the
polyacrylamide gels are not infinite, corrections
to the model have been formulated. In addition
to analytical models, finite element model-
ing has also been utilized to calculate stress
from a given displacement field (Yang et al.
2006).

Biosensors present an alternative to measur-
ing stress from observed substrate deformation.
These sensors link fluorescence resonance
energy transfer probes to the sides of an elastic
linking molecule so that the emitted fluores-
cence can be correlated with applied force.
Unlike micropost arrays and traction force
microscopy, biosensors can illuminate the me-
chanics of subcellular structures. Grashoff et al.
(2010) applied this concept to vinculin to un-
derstand its role in focal adhesion structure and
cycling. An elastic domain derived from spider
silk was bounded by two fluorescent probes and
inserted between the head and tail domains of
the molecule, which bind to different elements
of the focal adhesion. This strategy allowed the
authors to distinguish between vinculin recruit-
ment and force transmission, which were deter-
mined to be controlled independently during
cell adhesion. Stabley et al. (2012) also applied
this method to cell-surface receptors, specifi-
cally EGF receptors, which undergo endocy-
tosis once activated by a ligand. Rather than
spider silk, the authors used PEG monomers
of different lengths as the elastic linker because
its force-displacement relationship could be
predicted with a wormlike chain model. One
end of the PEG molecule was bound to biotin,
to allow for attachment to the substrate surface,
and the other to an EGFR ligand labeled with
a fluorescent probe. This method plausibly
can be applied to other cell-surface receptors
to measure applied force at specific adhesion
sites.
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ENGINEERED
THREE-DIMENSIONAL
CULTURE ENVIRONMENTS

Biological Signal Presentation Within
Natural and Synthetic Biomaterials

In vivo, the myriad of microenvironmental cues
with which cells interact are presented within
a 3D context. This 3D architecture of tissues
establishes another dimension of interactions
with ECM and other cell types that is not re-
capitulated in standard 2D model systems with
flat substrates, and it has been shown to affect
adhesion-receptor and growth factor–receptor
signaling (Fischbach et al. 2009, Hsiong et al.
2008, Roskelley et al. 1994, Wang et al. 1998),
among other pathways. Three-dimensional tis-
sue architectures can also prompt the formation
of soluble or matrix-bound gradients and can
exhibit unique mechanical characteristics that
influence cell function (DuFort et al. 2011).
Consequently, to complement approaches
utilizing strictly 2D cultures, substantial work
has been focused on developing improved
3D in vitro culture platforms (Figure 4). At
the center of these efforts is the considerable
research aimed at the development of 3D scaf-
folds that mimic the ECM of a specific tissue.
Both natural/biologically derived and synthetic
biomaterials have been explored extensively
for these purposes. The most common natural
ECM scaffolds utilized for in vitro applications
include collagen, fibrin, Matrigel, alginate, and
hyaluronic acid. Beginning with work by Bissell
and colleagues, collagen gel scaffolds, as well
as Matrigel and collagen/Matrigel composite
materials, have been demonstrated to be ideal
platforms for investigating mammary cell
proliferation and morphogenesis, and they
have formed the foundation for much of the
current knowledge on the 3D regulation of
mammary cell function and the importance of
matrix mechanics in these processes (Debnath
et al. 2003, Gudjonsson et al. 2002, Nelson
et al. 2006, Paszek et al. 2005, Petersen et al.
1992, Streuli & Bissell 1990). Furthermore,
3D culture systems have been explored for the
functional stabilization of primary cell types

in vitro. For example, encapsulation within
alginate is utilized commonly for maintaining
the rounded morphology and function of
primary chondrocytes (Hauselmann et al.
1992, Mok et al. 1994). Similarly, “double gel”
configurations, in which primary hepatocytes
are sandwiched between two layers of collagen
gel, have been shown to promote stabilized
hepatocyte morphology and functions for
approximately one week in culture (Dunn
et al. 1989, Guillouzo 1998). In addition to
scaffolds containing one or a few reconstituted
ECM components, the past several years have
seen a resurgence in approaches incorporating
ECM preparations from native tissues to
better recapitulate the complexities of in vivo
ECM environments, for example, in the liver
(LeCluyse et al. 1996, Lin et al. 2004b, Rojkind
et al. 1980, Sellaro et al. 2010). In particular,
decellularization strategies have been devel-
oped for organs such as the lung (Petersen
et al. 2010), liver (Uygun et al. 2010, Zhou
et al. 2011), and heart (Ott et al. 2008) in which
ECM components and microarchitecture are
maintained. Although these systems have been
pursued primarily for eventual transplantation
contexts, they also exhibit great potential for in
vitro studies. In addition, experiments focused
on identifying changes in matrix composition
that underlie normal and pathogenic processes
in vivo (Naba et al. 2011) should continue to
reveal important parameters for the design of
the most appropriate ECM scaffold systems
for in vitro analysis.

To develop more controlled and re-
producible 3D environments, synthetic
biomaterial scaffolds have been explored
widely. In particular, hydrogels, which exhibit
high water content and tissue-like mechanical
characteristics, have been utilized extensively
for both in vitro and in vivo tissue-engineering
applications (Peppas et al. 2000). For example,
PEG-based hydrogel systems exhibit many
desirable properties including a resistance to
the nonspecific binding of biological molecules
owing to their hydrophilicity as well as the
capacity for polymerization in the presence
of cells, which provides the capability for
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Extracellular matrix/natural scaffolds:
material chemistry

Synthetic biomaterials:
adhesive peptides, chemical
groups, degradable linkages

Porosity/mechanical:
weight percentage, cross-linking

Peptide

Linker

a

b

250 μm500 μm 50 μm50 μm

Figure 4
Engineered 3D culture environments. (a) A broad range of natural extracellular matrix (ECM) and synthetic biomaterial scaffolds have
been developed and utilized extensively to examine cellular function within a 3D context. Material chemistry as well as the porosity and
mechanical properties of the scaffolds can greatly affect cell survival, signaling, and differentiation. Synthetic biomaterials, such as
polymer hydrogel systems, are highly tailorable through the incorporation of adhesive peptides, protease-sensitive sites for degradation,
and other bioactive functional groups. (b) The 3D architecture of cell-biomaterial scaffolds can be controlled with patterning and
assembly methods. Liu Tsang et al. (2007) used hydrogel photopatterning to fabricate a multilayer branched construct (left). Li et al.
(2011) utilized DNA-directed assembly of microscale PEG hydrogels to generate larger multicellular structures containing two cell
types, differentially labeled green and blue in this image (middle). Underhill et al. (2007) organized hepatocytes ( purple,
hepatocyte-specific glycogen stain) within PEG hydrogels with dielectrophoresis and then subsequently surrounded them with
dielectrophoresis-patterned fibroblasts by additive photopatterning. Reproduced by permission of the Royal Society of Chemistry and
Elsevier.
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complete encapsulation with uniform cellular
distribution. In addition, PEG-based hydrogels
are highly tunable. Monomer chain length and
branching configurations can be adapted to
influence porosity and mechanical properties,
and bioactive elements can be coencapsulated
or conjugated to the polymer network to add bi-
ological functionality. Specifically, the addition
of peptides such as RGD (Asp-Gly-Arg)-
containing sequences, and the integration of
matrix metalloproteinase-sensitive sequences,
have been employed as methods to incorporate
adhesive and cell-mediated degradation prop-
erties, respectively (Lutolf & Hubbell 2005).
Other chemical modifications, such as the ad-
dition of heparin molecules or small functional
groups, have been shown to modulate the
retention of cell-secreted growth factors and
ECM and therefore to influence encapsulated
cell function (Benoit et al. 2007, 2008; Lin et al.
2009; Varghese et al. 2008). As in 2D scaffolds,
cell-cell interactions have been demonstrated
to regulate cell functions within 3D scaffolds.
For example, homotypic and heterotypic
interactions can influence liver cell survival and
function in 3D contexts (Chen et al. 2011, Esch-
bach et al. 2005, Harada et al. 2003, Moghe
et al. 1997, Sudo et al. 2009, Thomas et al. 2006,
Underhill et al. 2007). Consequently, in ad-
dition to efforts focused on the controlled
integration of adhesive ligands to provide
ECM-like properties, studies have explored
the material presentation of cell surface
molecules, such as ephrin receptors and ligands
(Lin & Anseth 2011, Moon et al. 2007),
to mimic cell-cell interactions. Additional
schemes for tailoring the biological properties
of 3D constructs include the incorporation
of releasable factors by the coencapsulation
of nano/microparticles with modular release
kinetics (Bian et al. 2011, Park et al. 2005) or
through the conjugation of bioactive factors
with cleavable linkages (Salvay & Shea 2006).
Furthermore, a series of recent studies by
Anseth and coworkers demonstrates newly
developing approaches for the dynamic ma-
nipulation of hydrogel factor presentation
and degradation based on photoactuation

chemistries (Adzima et al. 2011; DeForest
& Anseth 2011, 2012; DeForest et al. 2009;
Kloxin et al. 2009). Such strategies, in combi-
nation with methods for fabricating complex
3D architectures (discussed in detail below),
continue to encourage the development of
improved 3D platforms by enabling the in-
corporation of progressively diverse biological
signals for cell-material interactions and by
increasing the range of tunable parameters for
experimental manipulation.

Similar to 2D platforms, there are various
methods to modulate the mechanical environ-
ment of cells seeded in 3D constructs. A simple
means of altering the substrate stiffness is to
release the construct from the walls of its cul-
ture platform, essentially unfettering the cells
and allowing for substrate compaction (Bell
et al. 1979, Harris et al. 1981). Initially, re-
leased substrates have lower static stiffness com-
pared with constrained controls, but the me-
chanical environment changes as the substrate
compacts (Ferrenq et al. 1997). An alternative
to this approach is to tether 3D substrates to
walls of varying compliance, which allows for
precise control of the mechanical environment
(Legant et al. 2009). Matrix microstructure can
also be tuned to alter the stiffness of native
protein hydrogels and synthetic constructs, be-
yond simply changing concentrations or poly-
merization kinetics. Examples include increas-
ing substrate stiffness by glycosylating Matrigel
(Kuzuya et al. 1996) and photocross-linking
PEG constructs (Stahl et al. 2010). Finally, to
measure the 3D mechanical environment, 3D
traction-force microscopy has been developed
to provide insight into the forces exerted by
the cells on the surrounding matrix (Franck
et al. 2011, Legant et al. 2010, Maskarinec
et al. 2009). However, these methods are lim-
ited to ordered, elastic microstructures and can-
not capture the applied forces in collagen and
other viscoelastic networks.

Fabrication and Patterning of
Complex Architectures

To provide improved resolution in the 3D
structure of engineered in vitro tissues, an array
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of patterning and assembly strategies have been
developed (Figure 4). These advanced fabri-
cation methods can aid in tuning the macro-
and microscale structure of 3D constructs to
optimize in vitro cell function and can also
serve as tools for investigating the role of 3D
structure (e.g., soluble-factor or matrix gradi-
ents, 3D cell-cell interactions) in cellular pro-
cesses. Historically, a range of rapid proto-
typing technologies has been applied toward
the generation of porous biomaterial scaffolds
for therapeutic tissue engineering (Tsang &
Bhatia 2004), and substantial work continues
to be directed toward this area, with an empha-
sis on improved 3D resolution (Lewis 2006). In
the past decade, many of these principles for
controlling 3D structure have been adapted for
hydrogel applications. For instance, photopat-
terning methods, in which the cell/prepolymer
(e.g., PEG diacrylate) solution is exposed to
UV light through a photomask, have been uti-
lized to create constructs with a spectrum of
shapes and sizes as well as multilayer hydro-
gels with different cell types and modular ar-
chitectures (Beebe et al. 2000, Hahn et al.
2006, Liu Tsang et al. 2007, Liu & Bhatia
2002, Revzin et al. 2001, Underhill et al. 2007).
Laser-based stereolithography techniques also
have been applied to the fabrication of multi-
layer PEG hydrogels, including composite sys-
tems incorporating tethered ECM molecules
such as collagen (Chan et al. 2010, 2012). Mi-
croscale patterning of 3D hydrogels has been
shown to improve the viability of encapsulated
cells by mitigating the nutrient-delivery limita-
tions present in a bulk gel configuration (Liu
Tsang et al. 2007). Furthermore, multilayer
constructs designed to examine cell-cell inter-
actions have provided insights into the role
of cell communication in 3D structural het-
erogeneity, such as the zonal organization of
cartilage (Sharma et al. 2007). Many studies
have also demonstrated the utility of fluidic
devices for generating hydrogel gradients and
have employed this tactic for investigating gra-
dients of adhesive ligands, macromolecules, or
drugs (DeLong et al. 2005a, b; Kim et al. 2010;
Ostrovidov et al. 2012). Finally, in contrast

to these top-down–defined fabrication strate-
gies, recent approaches have suggested that 3D
structures could be assembled in a bottom-
up manner from individual microscale com-
ponents, leveraging concepts of self-assembly
processes that occur in many contexts (White-
sides & Grzybowski 2002). For example, Li
et al. (2011) showed that DNA-templated as-
sembly of cell-laden, 100-μm-diameter hydro-
gels was an effective method for the patterning
of larger multicomponent structures. Numer-
ous hydrogel printing technologies also have
been proposed as platforms for the assembly of
3D tissue constructs (Fedorovich et al. 2011,
Jakab et al. 2010). Specifically, inkjet-based
approaches, laser-mediated printing, and me-
chanical extrusion methods have been explored
and optimized for the deposition of hydro-
gel/cell subunits to build larger constructs with
predefined 3D geometries (Gruene et al. 2011,
Jakab et al. 2004, Nishiyama et al. 2009) in a
process commonly referred to as organ print-
ing. In addition, the fabrication of multitiered
3D structures has been achieved through lay-
ering of cell sheets released from temperature-
responsive polymer surfaces (described above)
(Ohashi et al. 2007) and through the stacking of
paper-supported hydrogel layers (Derda et al.
2009).

As a complement to strategies that specify
overall scaffold size and geometry, investi-
gators also have explored methods to dictate
the structure of 3D gel systems at the cellular
scale. For example, dielectrophoresis-based
patterning can be utilized to position cells
within a hydrogel prior to photoencapsulation
(Albrecht et al. 2005, 2006). By using this
approach, Albrecht et al. (2006) demonstrated
the role of cell-cell interactions in regulating
chondrocyte matrix synthesis. For the in vitro
formation of endothelial tubular structures,
PDMS substrates containing microfabricated
grooves have been used to mold collagen
or fibrin gels containing endothelial cells
(Chrobak et al. 2006, Raghavan et al. 2010a).
Molded microgel structures also have demon-
strated utility for deciphering cell responses
to soluble stimulation in 3D, specifically, the
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signaling effects of growth factors involved in
kidney tubulogenesis (Raghavan et al. 2010b).
Furthermore, the patterning of mammary
epithelial cells within collagen gels, using a mi-
crowell strategy, has formed the foundation for
a series of studies examining the mechanisms
underlying branching morphogenesis as well as
the role of tissue mechanics and local autocrine
gradients in this process (Gjorevski & Nelson
2010, Nelson et al. 2006, Pavlovich et al. 2011).

BIOREACTORS AND
MICROFLUIDICS

Bioreactors are devices that are designed to pre-
cisely control the in vitro culture environments
of cells and tissues by regulating the exchange
of nutrients as well as the presentation of both
chemical (e.g., soluble stimuli) and physical
(e.g., mechanical, electrical) signals. These
parameters can act to condition in vitro tissue

Bioreactors/microfluidics

Gradients

Perfusion

Fluid flow

a

b Optimize cell
expansion

Model and adjust
bioreactor conditions

Microfluidic
channel

Microfluidic
channel

Figure 5
In vitro bioreactors and microfluidic platforms. (a) In vitro flow-based systems
enable the investigation of cellular responses to hydrodynamic shear forces as
well as the assessment of the collective effects of perfusion on cell viability and
proliferation. In addition, microfluidic platforms can facilitate the analysis of
the effects of complex soluble gradients and are utilized widely for studies
requiring precise spatial and temporal control of soluble environments. (b) The
optimization of bioreactor platforms is critical for scaling up in vitro culture
systems and improving clinical translation capabilities. Figure based on work by
Zandstra and colleagues (Csaszar et al. 2012).

models to specific environments, simulating
in vivo contexts, and can serve a defining
role in cell fate and function. Accordingly, a
diverse range of bioreactors has been devel-
oped toward the optimization of engineered
tissue platforms, particularly for 3D scaffold
systems that can exhibit demanding control
requirements (Burdick & Vunjak-Novakovic
2009). In addition, microengineered bioreactor
approaches represent the focus of extensive
recent work aimed at recapitulating the full
scope of hierarchical in vivo interactions (cell-
cell, tissue-tissue, organ-organ) in on-chip
formats (Esch et al. 2011, Huh et al. 2011).
Here, we focus primarily on progress in two
areas: (a) the development of microscale fluidic
platforms for the in vitro analysis of cells within
continuous flow and gradient contexts and
(b) challenges and strategies for scaling up in
vitro culture systems (Figure 5).

Continuous Flow and
Gradient Systems

One obstacle to the analysis of cells in vitro is
the ability to provide gradients of extracellular
signals that more closely mimic the heteroge-
neous environments present in vivo. As we have
highlighted throughout the review, microflu-
idic approaches can provide additional spatial
and temporal control in the design of in vitro
systems. In particular, microfluidic platforms
can uniquely enable the formation of complex
patterns of soluble stimuli owing to laminar
flow characteristics in the channels as well as
through the large range of channel geometries
and device configurations that can be achieved
(Kim et al. 2010). For instance, many studies
have examined chemotaxis of cells within mi-
crofluidic device-generated gradients and have
utilized the flexibilities in the designs to explore
the effects of chemokine gradients with varied
shapes and steepness (Ambravaneswaran et al.
2010, Li Jeon et al. 2002, Lin et al. 2004a, Saadi
et al. 2007). The separation of flow streams
within microfluidics also has enabled studies
examining the localized stimulation of sections
of an embryo (Lucchetta et al. 2005) or even a
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single cell (Takayama et al. 2001). In vivo, the
progressive depletion of nutrients and soluble
factors contributes to the formation of signal-
ing gradients. In vitro systems can be designed
to simulate these conditions; for example, Allen
et al. (2005) used a mesoscale parallel-plate
bioreactor to establish steady-state oxygen gra-
dients and to examine the role of this gradient
in the zonal expression of drug metabolism
enzymes in hepatocytes. In addition, the effect
of perfusion on cell function has been explored
in microscale flow systems. For instance, such
studies have investigated the influence of hy-
drodynamic shear and nutrient transport on ES
cell proliferation and differentiation (Cimetta
et al. 2009, Kamei et al. 2009, Kim et al. 2006).
It has been suggested also that microfluidic
platforms can be applied toward the in vitro
analysis of primary tissues and the identifi-
cation of biomarkers. In recent work, Wood
et al. (2012) demonstrated that measurements
of blood flow dynamics within a microfluidic
device are a biophysical indicator of sickle cell
disease patient outcomes. Furthermore, studies
employing microfluidic devices containing en-
dothelial cells have built on the extensive work
using parallel-plate flow chambers (Chiu et al.
2009) to demonstrate the effects of distinct
shear regimes on endothelial cell stimulation
and thrombosis (Chin et al. 2011, Tsai et al.
2012, Wang et al. 2011a). Overall, owing
to the capabilities for miniaturization and
programming of complex flow characteristics,
microfluidic platforms have been established
as highly tractable tools for both dynamic
manipulation of soluble microenvironments
and high-throughput screening.

Scale-Up and Translational
Applications

Parallel to bioengineering strategies aimed
at providing mechanistic insights at the mi-
croscale, important studies are focused also
on developing in vitro platforms that could
contribute to the advancement of translational
applications. Specifically, for many organ sys-
tems, the development of an effective cell-based

therapy will require substantial scale-up over
laboratory designs. For example, it is estimated
that a clinically effective bioartificial liver
(either implanted or extracorporeal) would
require approximately 10% of the total liver
mass (Chamuleau 2009), corresponding to 1 ×
1010 hepatocytes. Accordingly, the fabrication
of large-scale engineered tissues will require
methods for facilitating nutrient delivery, and
numerous bioreactor approaches have been
pursued for these purposes. These include
strategies incorporating rotating walls (Yu
et al. 2004), scalable cartridge configurations
(Gerlach et al. 1994), and many methods for
integrating perfusion systems with porous
scaffolds or microengineered channels (Dvir
et al. 2006; Eschbach et al. 2005; McGuigan
& Sefton 2006; Radisic et al. 2004, 2006).
In addition, the implementation of a cell-
based therapy will require an expandable cell
source, and methods for obtaining a large
number of cells that maintain the proper
phenotype and function are required (King
& Miller 2007). Various perfusion systems
have been explored for the expansion of
ES cells (Oh et al. 2005, Thomson 2007)
and, in agreement with microfluidics studies,
suggest that modulating nutrient delivery and
the retention of autocrine factors by tuning
flow parameters can significantly influence
proliferation. Furthermore, studies performed
by Zandstra and colleagues have demonstrated
how in vitro hematopoietic stem cell expan-
sion is regulated by feedback signals from
differentiated cells (Kirouac et al. 2009, 2010).
Building on systems-based modeling of inter-
cellular interactions and bioreactor conditions,
modifications in the bioreactor design could be
employed and were demonstrated to enhance
stem cell proliferation (Csaszar et al. 2012).

CONCLUSIONS AND FUTURE
OUTLOOK

In the past two decades, the integration of engi-
neered in vitro culture models and studies in cell
and developmental biology has led to tremen-
dous progress in the understanding of the
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structure/function relationships regulating cell
and tissue processes. Specifically, work at this
interface of fields has highlighted the important
role of environmental context in determining
cell responses and has provided insights into not
only chemical signals but also how the physical
microenvironment of cells dictates function.
In addition, engineering approaches have
facilitated the development of a broad range
of in vitro applications with clinical relevance.
For example, optimized methods for directing
and scaling up stem cell differentiation are
being applied to cell sourcing challenges in
regenerative medicine. Further, improved
approaches for stabilizing the phenotype and
function of primary cell types in vitro are
demonstrating great utility for drug-screening
applications.

Despite the substantial progress in improv-
ing the fidelity of in vitro culture models and
analysis methods, many challenges remain to

be addressed. In particular, it remains unclear
for many systems how cells process complex,
and sometimes even conflicting, microenviron-
mental signals. Therefore, extensive efforts are
aimed at the development of platforms that
continue to enhance experimental throughput
and improved methods for investigating the
bidirectional interactions between multiple cell
types within a tissue as well as between cells
and tunable material systems. Ideally, the on-
going evolution of these approaches, together
with computational models of cell signaling
networks, should provide a clearer mechanis-
tic understanding of the in vitro conditions and
perturbations that remain primarily empirical
to date. Additionally, improved understanding
of species-specific requirements will aid in fur-
ther optimizing in vitro systems for investigat-
ing human cell and tissue function as well as the
improved translation toward novel therapeutic
approaches.
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Eschbach E, Chatterjee SS, Nöldner M, Gottwald E, Dertinger H, et al. 2005. Microstructured scaffolds

for liver tissue cultures of high cell density: morphological and biochemical characterization of tissue
aggregates. J. Cell. Biochem. 95:243–55

402 Underhill et al.

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
12

.2
8:

38
5-

41
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 M
as

sa
ch

us
et

ts
 I

ns
tit

ut
e 

of
 T

ec
hn

ol
og

y 
(M

IT
) 

on
 0

2/
17

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



CB28CH15-Bhatia ARI 5 September 2012 17:1
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