Inhalable point-of-care urinary diagnostic platform
Publication Type:
Article
Authors:
Qian Zhong, Edward K. W. Tan, Carmen Martin-Alonso, Tiziana Parisi, Liangliang Hao, Jesse D. Kirkpatrick, Tarek Fadel, Heather E. Fleming, Tyler Jacks, Sangeeta N. Bhatia.
Source:
Science Advances (2024)
URL:
https://www.science.org/doi/10.1126/sciadv.adj9591
Abstract:
Although low-dose computed tomography screening improves lung cancer survival in at- risk groups, inequality remains in lung cancer diagnosis due to limited access to and high costs of medical imaging infrastructure. We designed a needleless and imaging- free platform, termed PATROL (point-of-care aerosolizable nanosensors with tumor- responsive oligonucleotide barcodes), to reduce resource disparities for early detection of lung cancer. PATROL formulates a set of DNA- barcoded, activity- based nanosensors (ABNs) into an inhalable format. Lung cancer–associated proteases selectively cleave the ABNs, releasing synthetic DNA reporters that are eventually excreted via the urine. The urinary signatures of barcoded nanosensors are quantified within 20 min at room temperature using a multiplexable paper- based lateral flow assay. PATROL detects early- stage tumors in an autochthonous lung adenocarcinoma mouse model with high sensitivity and specificity. Tailoring the library of ABNs may enable not only the modular PATROL platform to lower the resource threshold for lung cancer early detection tools but also the rapid detection of chronic pulmonary disorders and infections.
Manuscript (PDF)