Microenvironment-triggered multimodal precision diagnostics
PPublication Type:
Article
Authors:
Liangliang Hao, Nazanin Rohani, Renee T. Zhao, Emilia M. Pulver, Howard Mak, Olivia J. Kelada, Henry Ko, Heather E. Fleming, Frank B. Gertler & Sangeeta N. Bhatia
Source:
Nature Materials (2021), https://doi.org/10.1038/s41563-021-01042-y
URL:
https://www.nature.com/articles/s41563-021-01042-y
Abstract:
Therapeutic outcomes in oncology may be aided by precision diagnostics that offer early detection, localization and the opportunity to monitor response to therapy. Here, we report a multimodal nanosensor engineered to target tumours through acidosis, respond to proteases in the microenvironment to release urinary reporters and (optionally) carry positron emission tomography probes to enable localization of primary and metastatic cancers in mouse models of colorectal cancer. We present a paradigm wherein this multimodal sensor can be employed longitudinally to assess burden of disease non-invasively, including tumour progression and response to chemotherapy. Specifically, we showed that acidosis-mediated tumour insertion enhanced on-target release of matrix metalloproteinase-responsive reporters in urine. Subsequent on-demand loading of the radiotracer 64Cu allowed pH-dependent tumour visualization, enabling enriched microenvironmental characterization when compared with the conventional metabolic tracer 18F-fluorodeoxyglucose. Through tailored target specificities, this modular platform has the capacity to be engineered as a pan-cancer test that may guide treatment decisions for numerous tumour types.
Manuscript (PDF)